A Review of Dynamic Causal Modelling Based on Neuronal Population Models
Li Shuangyan1,2,3*, Yue Xuanya1,2,3, Wang Longlong1,2,3, Xu Guizhi1,2,3
1(State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China) 2(Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health, Hebei University of Technology, Tianjin 300130, China) 3(Hebei Key Laboratory of Bioelectromagnetics and Neuroengineering, Hebei University of Technology, Tianjin 300130, China)
Abstract:Brain is the most complex organ and plays functional roles through the complex neural networks consisted by the connections in various brain regions. Changes of the network characteristics are closely related to the physiological and pathological states of the brain. In recent years, there has been an increasing focus on brain network analysis algorithms. Among all the methods, dynamic causal modeling (DCM) has received extensive attention due to its biophysical plausibility. This article reviewed advances of DCM from the aspects of basic principles, neuron mass models and applications. After introducing DCM principle, the development of two kinds of neuron mass models: the convolutional based model and the conductance-based model were reviewed, sincethey play key role in the biophysical plausibility of the DCM algorithm. The application examples of DCM in the field of neural signal analysis related to cognitive function and disease pathology were further presented, indicating the effectiveness of DCM. Finally, the research progress and limitations of the DCM algorithm were summarized.
李双燕, 岳宣雅, 王龙龙, 徐桂芝. 基于神经元集群模型的动态因果模型算法综述[J]. 中国生物医学工程学报, 2023, 42(6): 740-749.
Li Shuangyan, Yue Xuanya, Wang Longlong, Xu Guizhi. A Review of Dynamic Causal Modelling Based on Neuronal Population Models. Chinese Journal of Biomedical Engineering, 2023, 42(6): 740-749.
[1] Tardiff N, Medaglia JD, Bassett DS, et al. The modulation of brain network integration and arousal during exploration [J]. NeuroImage, 2021, 240: 118369. [2] 张天恒,王磊,郭苗苗,等. 虚拟现实视觉体验对脑功能网络的影响 [J]. 生物医学工程学杂志, 2020, 37(2): 251-261. [3] Allart E, Viard R, Lopes R, et al. Influence of motor deficiency and spatial neglect on the contralesional posterior parietal cortex functional and structural connectivity in stroke patients [J]. Annals of Physical and Rehabilitation Medicine, 2018, 61: 26-27. [4] Li X, Zhang J, Li XD, et al. Neurofeedback Training for Brain Functional Connectivity Improvement in Mild Cognitive Impairment [J]. Journal of Medical and Biological Engineering, 2020, 40(4): 484-495. [5] 黄孙培. 基于云平台的脑动态因果模型分析 [D]. 成都: 电子科技大学, 2020. [6] Lehet M, Tso IF, Park S, et al. Altered Effective Connectivity within an Oculomotor Control Network in Unaffected Relatives of Individuals with Schizophrenia [J]. Brain Sciences, 2021, 11(9): 1228. [7] 李昕,王欣,安占周,等. 基于脑功能网络分析的孤独症儿童辅助干预效果研究 [J/OL]. 自动化学报, 2021, 47(11): 2654-2663. [8] Figueroa JMD, Cañete MC, Carbó CM, et al. Structural equation models to estimate dynamic effective connectivity networks in resting fMRI. A comparison between individuals with Down syndrome and controls [J]. Behavioural Brain Research, 2021(1): 113188. [9] Abbas AK, Azemi G, Amiri S, et al. Effective connectivity in brain networks estimated using EEG signals is altered in children with ADHD [J]. Computers in Biology and Medicine, 2021, 134: 104515. [10] 宋之琰,陈军,汪雅琪,等. 基于格兰杰因果分析法对酒精使用障碍者双侧伏隔核效应连接变化的研究 [J]. 临床放射学杂志, 2020, 39(9): 1704-1709. [11] Huang XB, Zhang D, Wang P, et al. Altered amygdala effective connectivity in migraine without aura: evidence from resting-state fMRI with Granger causality analysis [J]. The Journal of Headache and Pain, 2021, 22(1): 25. [12] Friston KJ, Harrison L, Penny W. Dynamic causal modelling [J]. NeuroImage, 2003, 19(4): 1273-1302. [13] David O, Kiebel S, Harrison L, et al. Dynamic causal modeling of evoked responses in EEG and MEG [J]. Neuroimage 2006, 30(4): 1255-1272. [14] Garrido MI, Kilner JM, Kiebel SJ, et al. Evoked brain responses are generated by feedback loops [J]. Proc Natl Acad SciUSA 2007, 104: 20961-20966. [15] Litvak V, Jafarian A, Zeidman P, et al. There's no such thing as a 'true' model: the challenge of assessing face validity [C]//2019 IEEE International Conference on Systems, Man and Cybernetics (SMC). Bari: IEEE, 2019: 4403-4408. [16] 李佳铭. 基于谱动态因果模型的重性抑郁症患者有效连接分析 [D]. 西安: 西安电子科技大学, 2019. [17] David O, Harrison L, Friston KJ. Modelling event-related responses in the brain [J]. NeuroImage, 2009, 25(3): 756-770. [18] Jansen BH, Rit VG. Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns [J]. Biological Cybernetics, 1995, 73(4): 357-366. [19] 张瑞,潘敏,李斯卉,等. 基于J&R模型的神经集群模型综述 [J].西北大学学报(自然科学版), 2019, 49(1): 12-18. [20] André MB, Loonis R, Kornblith S , et al. Laminar recordings in frontal cortex suggest distinct layers for maintenance and control of working memory [J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(5): 1117-1122. [21] Dong GH, Dong HH, Wang M, et al. Dorsal and ventral striatal functional connectivity shifts play a potential role in internet gaming disorder [J]. Communications Biology, 2021, 4(1): 866. [22] Freeman, WJ. Mass Action in the Nervous System [M]// New York: Academic Press, 1975: 402-461. [23] David O, Friston KJ. A neural mass model for MEG/EEG: coupling and neuronal dynamics [J]. NeuroImage, 2003, 20(3): 1743-1755. [24] Garrido MI, Kilner JM, Kiebel SJ, et al. Dynamic causal modelling of evoked potentials: A reproducibility study [J]. NeuroImage, 2007, 36(3): 571-580. [25] Moran RJ, Kiebel SJ, Stephan KE, et al. A neural mass model of spectral responses in electrophysiology [J]. NeuroImage, 2007, 37(3): 706-720. [26] Marreiros AC, Daunizeau J, Kiebel SJ, et al. Population dynamics: Variance and the sigmoid activation function [J]. NeuroImage, 2008, 42(1): 147-157. [27] Bastos A, Usrey WM, Adams R, et al. Canonical Microcircuits for Predictive Coding [J]. Neuron, 2012, 76(4): 695-711. [28] Pinotsis DA, Moran RJ, Friston KJ. Dynamic causal modeling with neural fields [J]. NeuroImage, 2012, 59(2):1261-1274. [29] André CM, Hayriye C, Rosalyn JM, et al. Basal ganglia–cortical interactions in Parkinsonian patients [J]. NeuroImage, 2013, 66: 301-310. [30] Mrudul BB, Stephanie B, Holly ER, et al. Computational modelling of movement-related beta-oscillatory dynamics in human motor cortex [J]. NeuroImage, 2016, 133: 224-232. [31] Jafarian A, Freestone DR, Nesic D, et al. Slow-fast duffing neural mass model [C]// 2019 41st Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). Berlin: IEEE, 2019: 142-145. [32] Jafarian A, Zeidman P, Wykes RC, et al. Adiabatic dynamic causal modelling [J]. NeuroImage, 2021, 238: 118243. [33] Marreiros AC, Kiebel SJ, Daunizeau J, et al. Population dynamics under the Laplace assumption [J]. NeuroImage, 2009, 44(3): 701-714. [34] André CM, Stefan JK, Karl JF. A dynamic causal model study of neuronal population dynamics [J]. NeuroImage, 2010, 51(1): 91-101. [35] Moran RJ, Stephan KE, Dolan RJ, et al. Consistent spectral predictors for dynamic causal models of steady-state responses [J]. NeuroImage, 2011, 55(4): 1694-1708. [36] Bastos A, Usrey WM, Adams R, et al. Canonical microcircuits for predictive coding [J]. Neuron, 2012, 76(4): 695-711. [37] Moran RJ, Jones MW, Blockeel AJ, et al. Losing control under ketamine: suppressed cortico-hippocampal drive following acute ketamine in rats [J]. Neuropsychopharmacology, 2015, 40(2): 268-277. [38] Bernadette CMW, Hayriye C, Vladimir L, et al. Generic dynamic causal modelling: An illustrative application to Parkinson's disease [J]. NeuroImage, 2018, 181: 818-830. [39] Huang CH, Lin CCK. A novel density-based neural mass model for simulating neuronal network dynamics with conductance-based synapses and membrane current adaptation [J]. Neural Networks, 2021,143: 183-197. [40] Kartik KI, Anthony JA, Sophia VH, et al. Copland. Alterations to dual stream connectivity predicts response to aphasia therapy following stroke [J]. Cortex, 2020, 125: 30-43. [41] Parr T, Mirza MB, Cagnan H, et al. Dynamic Causal Modelling of Active Vision [J]. The Journal of Neuroscience, 2019, 39(32): 6265-6275. [42] Cooray GK, Sundgren M, Brismar T. Mechanism of visual network dysfunction in relapsing-remitting multiple sclerosis and its relation to cognition [J]. Clinical Neurophysiology, 2020,131(2): 361-367. [43] Parr T, Mirza MB, Cagnan H, et al. Dynamic Causal Modelling of Active Vision [J]. The Journal of Neuroscience, 2019, 39(32). 361-367. [44] Penny W, Iglesias FJ, Quiroz YT, et al. Dynamic causal modeling of preclinical autosomal-dominant Alzheimer's disease [J]. J Alzheimers Dis, 2018;65(3):697-711. [45] 曾荷花,郭文勇,刘岱岳,等. 重复经颅磁刺激治疗对精神分裂症患者阴性症状及认知功能的影响 [J]. 当代临床医刊, 2021, 34(2): 25-26. [46] Li F, Wang J, Jiang YL, et al. Top-down disconnectivity in schizophrenia during P300 tasks [J]. Frontiers in Computational Neuroence, 2018, 12: 33. [47] Kit ML, Morten M, Michelle RB, et al. Individuals with 22q11.2 deletion syndrome show intact prediction but reduced adaptation in responses to repeated sounds: evidence from Bayesian mapping [J]. NeuroImage: Clinical, 2019, 22: 101721. [48] Dzafic I, Larsen KM, Darke H, et al. Stronger Top-down and weaker bottom-up frontotemporal connections during sensory learning are associated with severity of psychotic phenomena [J]. Schizophrenia Bulletin, 2021, 47(1): 1039-1047. [49] Kit ML, Ilvana D, Hayley D, et al. Aberrant connectivity in auditory precision encoding in schizophrenia spectrum disorder and across the continuum of psychotic-like experiences [J]. Schizophrenia Research, 2020, 222: 185-194. [50] Rosch RE, Auksztulewicz RP, Friston KJ, et al. Selective prefrontal disinhibition in a roving auditory oddball paradigm under N-methyl-D-aspartate receptor blockade [J]. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2019, 4(2): 140-150. [51] Ghazaleh SH, Ali MN. Effective connectivity of mental fatigue: Dynamic casual modeling of EEG data [J]. Technology and Health Care, 2019, 27(4): 343-352. [52] Bassez I, Van de Steen F, Ricci K, et al. Dynamic causal modelling of the reduced habituation to painful stimuli in migraine: an EEG study [J]. Brain Sciences, 2020, 10(10): 712. [53] Bönstrup M, Schulz R, Schön G, et al. Parietofrontal network upregulation after motor stroke [J]. NeuroImage Clinical, 2018, 18: 720-729. [54] Sanders RD, Banks MI, Darracq M, et al. Propofol-induced unresponsiveness is associated with impaired feedforward connectivity in cortical hierarchy [J]. British Journal of Anaesthesia, 2018, 121(5): 1084-1096. [55] Adams NE, Hughes LE, Rouse MA, et al. GABAergic cortical network physiology in frontotemporal lobar degeneration [J]. Brain: A Journal of Neurology, 2021, 144(7): 2135-2145. [56] Al-Ezzi A, Kamel N, Faye I, et al. Review of EEG, ERP, and brain connectivity estimators as predictive biomarkers of social anxiety disorder [J]. Frontiers in Psychology, 2020, 11: 730. [57] Wang LH, Kevin M, David S. Weakened role of ventromedial and dorsolateral cortex in regulating amygdala activity in late-life depression - a dynamic causal modelling study on resting state fMRI[J]. The American Journal of Geriatric Psychiatry,2020,28(4): S135. [58] Jonak K. Widespread reductions of spontaneous neurophysiological activity in Leber's disease-an application of EEG source current density reconstruction [J]. Brain Sciences, 2020, 10(9): 622. [59] 向芳. rTMS联合运动训练影响脑皮层活动的溯源分析 [D]. 北京:北京协和医学院, 2018. [60] Kang J, Jung K, Eo J, et al. Dynamic causal modeling of hippocampal activity measured via mesoscopic voltage-sensitive dye imaging [J]. NeuroImage, 2020, 213: 116755. [61] Richard ER, Paul RH, Torsten B, et al. Calcium imaging and dynamic causal modelling reveal brain-wide changes in effective connectivity and synaptic dynamics during epileptic seizures [J]. PLoS Computational Biology, 2018, 14(8): 1006375. [62] Amirhossein J, Vladimir L, Hayriye C, et al. Comparing dynamic causal models of neurovascular coupling with fMRI and EEG/MEG [J]. NeuroImage, 2020, 216: 116734. [63] Wei H, Jafarian A, Zeidman P, et al. Bayesian fusion and multimodal DCM for EEG and fMRI [J]. NeuroImage, 2020, 211: 116595. [64] Parr T, Bhat A, Zeidman P, et al. Dynamic causal modelling of immune heterogeneity [J]. Scientific Reports, 2021, 11(1): 11400. [65] Friston KJ, Costello A, Pillay D. Dark matter, second waves and epidemiological modelling [J]. British Medical Journal Global Health, 2020, 5(12): 003978.