Abstract:Magnetoencephalography (MEG) , as a new technology for non-invasive acquisition of brain signals, can accurately reflect the neural activity of the brain, however, traditional MEG equipment requires low-temperature superconducting environment and high operation and maintenance costs, which limit the development of this technology. Optically pumped magnetometer is a new type of magnetic field strength detection device that has many advantages including relatively low cost, high signal-to-noise ratio, no need for cryogenic liquid helium cooling, and are expected to promote MEG technology to wider applications. Based on the concept of MEG, this paper introduced the implementation principle of the optical-pump magnetometer-magnetic encephalography system from a technical point of view, clarifies the naming confusions that are existing in the system, and summarized the application and research progress of the system from several aspects including neural speech decoding, MEG source reconstruction, functional neuroimaging, brain-computer interface, and clinical assistance, meanwhile, summarized the unique advantages of the new MEG system. The potential application of this technology in the future was prospected, and the possible problems in the current research were analyzed and discussed.
[1] Faley MI, Kostyurina EA, Kalashnikov KV, et al. Superconducting quantum interferometers for nondestructive evaluation[J]. Sensors, 2017, 17(12): 2798. [2] Iivanainen J, Zetter R, Parkkonen L. Potential of on‐scalp MEG: Robust detection of human visual gamma‐band responses[J]. Human Brain Mapping, 2020, 41(1): 150-161. [3] Boto E, Holmes N, Leggett J, et al. Moving magnetoencephalography towards real-world applications with a wearable system[J]. Nature, 2018, 555(7698): 657-661. [4] Luo Liqun. Architectures of neuronal circuits[J]. Science, 2021, 373(6559): eabg7285. [5] Barth DS, Sutherling W, Beatty J. Intracellular currents of interictal penicillin spikes: evidence from neuromagnetic mapping[J]. Brain Research, 1986, 368(1): 36-48. [6] Cohen D, Cuffin BN. Demonstration of useful differences between magnetoencephalogram and electroencephalogram[J]. Electroencephalography and Clinical Neurophysiology, 1983, 56(1): 38-51. [7] Tamilia E, AlHilani M, Tanaka N, et al. Assessing the localization accuracy and clinical utility of electric and magnetic source imaging in children with epilepsy[J]. Clinical Neurophysiology, 2019, 130(4): 491-504. [8] Baillet S. Magnetoencephalography for brain electrophysiology and imaging[J]. Nature Neuroscience, 2017, 20(3): 327-339. [9] Singh SP. Magnetoencephalography: basic principles[J]. Ann Indian Acad Neurol, 2014, 17, 107-112. [10] 朱佳俊,林挺宇,张恒运,等. 脑电波分析及处理综述 [J]. 智能计算机与应用, 2021, 11(2): 123-128. [11] Kaiser J, Lutzenberger W. Induced gamma-band activity and human brain function[J]. The Neuroscientist, 2003, 9(6): 475-484. [12] Van Deursen JA, Vuurman E, Verhey FRJ, et al. Increased EEG gamma band activity in Alzheimer’s disease and mild cognitive impairment[J]. Journal of Neural Transmission, 2008, 115(9): 1301-1311. [13] Tierney TM, Holmes N, Mellor S, et al. Optically pumped magnetometers: From quantum origins to multi-channel magnetoencephalography[J]. NeuroImage, 2019, 199: 598-608. [14] Zhdanov A, Nurminen J, Baess P, et al. An internet-based real-time audiovisual link for dual MEG recordings[J]. PLoS ONE, 2015, 10(6): e0128485. [15] 孙雷. 87Rb原子的偏振梯度冷却的研究 [D]. 杭州:浙江大学,2010. [16] Dupont-Roc J, Haroche S, Cohen-Tannoudji C. Detection of very weak magnetic fields (10-9 gauss) by 87Rb zero-field level crossing resonances[J]. Physics Letters A, 1969, 28(9): 638-639. [17] Slijkhuis S, Nienhuis G, Morgenstern R. Inhibition of the Larmor precession during optical pumping in a weak magnetic field[J]. Physical Review A, 1986, 33(6): 3977. [18] Korth H, Strohbehn K, Tejada F, et al. Miniature atomic scalar magnetometer for space based on the rubidium isotope 87Rb[J]. Journal of Geophysical Research: Space Physics, 2016, 121(8): 7870-7880. [19] Zuo Siming, Schmalz J, Özden MÖ, et al. Ultrasensitive magnetoelectric sensing system for pico-tesla magnetomyography[J]. IEEE Transactions on Biomedical Circuits and Systems, 2020, 14(5): 971-984. [20] IJsselsteijn R, Kielpinski M, Woetzel S, et al. A full optically operated magnetometer array: An experimental study[J]. Review of Scientific Instruments, 2012, 83(11): 113106. [21] 任洁钏,乔慧,王群. 脑磁图在癫痫术前定位中的应用进展 [J]. 临床神经病学杂志, 2017, 30(4): 314-316. [22] Allred JC, Lyman RN, Kornack TW, et al. High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation[J]. Physical Review Letters, 2002, 89(13): 130801. [23] Vasilakis G. Precision measurements of spin interactions with high density atomic vapors[D]. Princeton: Princeton University, 2011. [24] 张雪. 全光学原子磁力仪无自旋交换弛豫机制影响因子仿真与优化[D]. 吉林:吉林大学,2019. [25] 季云兰. 无自旋交换弛豫原子磁力计及其零场-超低场核磁共振的应用[D]. 合肥:中国科学技术大学,2019. [26] Happer W, Tang H. Spin-exchange shift and narrowing of magnetic resonance lines in optically pumped alkali vapors[J]. Physical Review Letters, 1973, 31(5): 273. [27] Boto E, Bowtell R, Krüger P, et al. On the potential of a new generation of magnetometers for MEG: a beamformer simulation study[J]. PLoS ONE, 2016, 11(8): e0157655. [28] Xia H, Ben-Amar Baranga A, Hoffman D, et al. Magnetoencephalography with an atomic magnetometer[J]. Applied Physics Letters, 2006, 89(21): 211104. [29] Kominis IK, Kornack TW, Allred JC, et al. A subfemtotesla multichannel atomic magnetometer[J]. Nature, 2003, 422(6932): 596-599. [30] Johnson C, Schwindt PDD, Weisend M. Magnetoencephalography with a two-color pump-probe, fiber-coupled atomic magnetometer[J]. Applied Physics Letters, 2010, 97(24): 243703. [31] Iivanainen J, Zetter R, Parkkonen L. Potential of on‐scalp MEG: robust detection of human visual gamma‐band responses[J]. Human Brain Mapping, 2020, 41(1): 150-161. [32] Zhang Xin, Chen Chunjiao, Zhang Mingkang, et al. Detection and analysis of MEG signals in occipital region with double-channel OPM sensors[J]. Journal of Neuroscience Methods, 2020, 346: 108948. [33] Dash D, Wisler A, Ferrari P, et al. MEG sensor selection for neural speech decoding[J]. IEEE Access, 2020, 8: 182320-182337. [34] Wittevrongel B, Holmes N, Boto E, et al. Optically pumped magnetometers for practical MEG-based brain-computer interfacing[J]. Brain-Computer Interface Research: A State-of-the-Art Summary, 2021, 10: 35-46. [35] De Lange P, Boto E, Holmes N, et al. Measuring the cortical tracking of speech with optically-pumped magnetometers[J]. NeuroImage, 2021, 233: 117969. [36] Brookes MJ, Boto E, Rea M, et al. Theoretical advantages of a triaxial optically pumped magnetometer magnetoencephalography system[J]. NeuroImage, 2021, 236: 118025. [37] Boto E, Shah V, Hill RM, et al. Triaxial detection of the neuromagnetic field using optically-pumped magnetometry: feasibility and application in children[J]. NeuroImage, 2022, 252: 119027. [38] Boto E, Hill RM, Rea M, et al. Measuring functional connectivity with wearable MEG[J]. NeuroImage, 2021, 230: 117815. [39] Vivekananda U, Mellor S, Tierney TM, et al. Optically pumped magnetoencephalography in epilepsy[J]. Annals of Clinical and Translational Neurology, 2020, 7(3): 397-401. [40] Feys O, Corvilain P, Aeby A, et al. On-scalp optically pumped magnetometers versus cryogenic magnetoencephalography for diagnostic evaluation of epilepsy in school-aged children[J]. Radiology, 2022, 304(2): 429-434. [41] Allen CM, Rier L, Halsey L, et al. 124 MEGAbIT-the role of OPM MEG in assessment and diagnosis in mTBI[J]. Journal of Neurology, Neurosurgery and Psychiatry, 2022, 93(6): A49-A49. [42] Hämäläinen M, Hari R, Ilmoniemi RJ, et al. Magnetoencephalo-graphy-theory, instrumentation, and applications to noninvasive studies of the working human brain[J]. Reviews of Modern Physics, 1993, 65(2): 413. [43] Pinti P, Tachtsidis I, Hamilton A, et al. The present and future use of functional near-infrared spectroscopy (fNIRS) for cognitive neuroscience[J]. Annals of the New York Academy of Sciences, 2020, 1464(1): 5-29.