Progress in the Application of Nanodrug Delivery Vehicles in Intervertebral Disc Degeneration
Guo Jiazheng1, Jiang Feng1, Zhu Zhenyu2, Shi Jiangang2, Xu Ximing2*, Li Xiang1*
1(School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China) 2(Department of Orthopaedics,Changzheng Hospital,Naval Medical University,Shanghai 200003,China)
Abstract:Intervertebral disc degeneration (IVDD) is a common degenerative disease, especially with a trend towards affecting younger individuals. It leads to conditions such as back pain, leg pain, and even disability, significantly impacting the quality of life of patients, it is a challenge of health that is worthy of attention. Traditional treatment methods for IVDD include physical therapy, medication, and surgical intervention in severe cases; however, these treatments are not effective in preventing or delaying the progression of IVDD. With significant advancements in nanotechnology and regenerative medicine in the healthcare field, particularly in the area of nano-drug delivery system (NDDS), the development of drug carriers with high biocompatibility and biodegradability that can precisely deliver drugs to targeted areas shows great potential in extending drug release time and improving therapeutic outcomes. This article summarized the application achievements of NDDS in delivering genes, cells, proteins, and therapeutic drugs, providing a comprehensive overview of the latest research progress in NDDS for treating IVDD. It highlighted the key challenges faced by NDDS in IVDD treatment and looks forward to the future development prospects of NDDS.
[1] Vos T, Lim SS, Abbafati C, et al. Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019[J]. The Lancet, 2020, 396(10258): 1204-1222. [2] de David CN, Deligne LMC, da Silva RS, et al. The burden of low back pain in Brazil: estimates from the Global Burden of Disease 2017 Study[J]. Population Health Metrics, 2020, 18: 1-10. [3] Mueller A. Rückenreport 2020[J]. Bulletin des Médecins Suisses, 2021, 102(4): 118-120. [4] Baliga S, Treon K, Craig NJA. Low back pain: current surgical approaches[J]. Asian Spine Journal, 2015, 9(4): 645. [5] Henry N, Clouet J, Le Bideau J, et al. Innovative strategies for intervertebral disc regenerative medicine: from cell therapies to multiscale delivery systems[J]. Biotechnology Advances, 2018, 36(1): 281-294. [6] Zhang H, Yang X, Huang Y, et al. Reviving intervertebral discs: treating degeneration using advanced delivery systems[J]. Molecular Pharmaceutics, 2024, 21(2): 373-392. [7] Xia Q, Zhao Y, Dong H, et al. Progress in the study of molecular mechanisms of intervertebral disc degeneration[J]. Biomedicine & Pharmacotherapy, 2024, 174: 116593. [8] Liu W, Ma Z, Wang Y. Multiple nano-drug delivery systems for intervertebral disc degeneration: current status and future perspectives[J]. Bioactive Materials, 2023, 23: 274-299. [9] Kelsey R. Targeting NP. Cell senescence in IVDD[J]. Nature Reviews Rheumatology, 2024, 20(4): 197-197. [10] Whatley BR, Wen X. Intervertebral disc (IVD): structure, degeneration, repair and regeneration[J]. Materials Science and Engineering: C, 2012, 32(2): 61-77. [11] Dowdell J, Erwin M, Choma T, et al. Intervertebral disk degeneration and repair[J]. Neurosurgery, 2017, 80(3S): S46-S54. [12] Molladavoodi S, McMorran J, Gregory D. Mechanobiology of annulus fibrosus and nucleus pulposus cells in intervertebral discs[J]. Cell and Tissue Research, 2020, 379: 429-444. [13] Bron JL, Helder MN, Meisel HJ, et al. Repair, regenerative and supportive therapies of the annulus fibrosus: achievements and challenges[J]. European Spine Journal, 2009, 18: 301-313. [14] Iatridis JC. Structural and functional repair of the annulus fibrosus[J]. Global Spine Journal, 2016, 6(1suppl): s-0036-1582578. [15] Peng Y, Chen X, Rao Z, et al. Multifunctional annulus fibrosus matrix prevents disc-related pain via inhibiting neuroinflammation and sensitization[J]. Acta Biomaterialia, 2023, 170: 288-302. [16] Wise CA, Sepich D, Ushiki A, et al. The cartilage matrisome in adolescent idiopathic scoliosis[J]. Bone Research, 2020, 8(1): 13. [17] Crump KB, Alminnawi A, Bermudez‐Lekerika P, et al. Cartilaginous endplates: a comprehensive review on a neglected structure in intervertebral disc research[J]. JOR Spine, 2023, 6(4): e1294. [18] Song C, Zhou Y, Cheng K, et al. Cellular senescence-molecular mechanisms of intervertebral disc degeneration from an immune perspective[J]. Biomedicine & Pharmacotherapy, 2023, 162: 114711. [19] Karchevskaya AE, Poluektov YM, Korolishin VA. Understanding intervertebral disc degeneration: background factors and the role of initial injury[J]. Biomedicines, 2023, 11(10): 2714. [20] Wang WJ, Yu XH, Wang C, et al. MMPs and ADAMTSs in intervertebral disc degeneration[J]. Clinica Chimica Acta, 2015, 448: 238-246. [21] Zhang GZ, Liu MQ, Chen HW, et al. NF‐κB signalling pathways in nucleus pulposus cell function and intervertebral disc degeneration[J]. Cell Proliferation, 2021, 54(7): e13057. [22] Molinos M, Almeida CR, Caldeira J, et al. Inflammation in intervertebral disc degeneration and regeneration[J]. Journal of the Royal Society Interface, 2015, 12(104): 20141191. [23] Ye F, Xu Y, Lin F, et al. TNF‐α suppresses SHOX2 expression via NF‐κB signaling pathway and promotes intervertebral disc degeneration and related pain in a rat model[J]. Journal of Orthopaedic Research, 2021, 39(8): 1745-1754. [24] Le Maitre CL, Hoyland JA, Freemont AJ. Interleukin-1 receptor antagonist delivered directly and by gene therapy inhibits matrix degradation in the intact degenerate human intervertebral disc: an in situ zymographic and gene therapy study[J]. Arthritis Research & Therapy, 2007, 9: 1-12. [25] Wang, JR. TNF-α and IL-1β promote a disintegrin-like and metalloprotease with thrombospondin type I motif-5-mediated aggrecan degradation through syndecan-4 in intervertebral disc[J]. Journal of Biological Chemistry, 2011,46 (286): 39738-39749. [26] Detmer SA, Chan DC. Functions and dysfunctions of mitochondrial dynamics[J]. Nature Reviews Molecular Cell Biology, 2007, 8(11): 870-879. [27] Xu WN, Zheng HL, Yang Z, et al. Mitochondrial NDUFA4L2 attenuates the apoptosis of nucleus pulposus cells induced by oxidative stress via the inhibition of mitophagy[J]. Experimental & Molecular Medicine, 2019, 51(11): 1-16. [28] Lu P, Zheng H, Meng H, et al. Mitochondrial DNA induces nucleus pulposus cell pyroptosis via the TLR9-NF-κB-NLRP3 axis[J]. Journal of Translational Medicine, 2023, 21(1): 389. [29] Hu B, Wang P, Zhang S, et al. HSP70 attenuates compression-induced apoptosis of nucleus pulposus cells by suppressing mitochondrial fission via upregulating the expression of SIRT3[J]. Experimental & Molecular Medicine, 2022, 54(3): 309-323. [30] Wang Y, Che M, Xin J, et al. The role of IL-1β and TNF-α in intervertebral disc degeneration[J]. Biomedicine & Pharmacotherapy, 2020, 131: 110660. [31] Wang F, Cai F, Shi R, et al. Aging and age related stresses: a senescence mechanism of intervertebral disc degeneration[J]. Osteoarthritis and Cartilage, 2016, 24(3): 398-408. [32] Xu J, Shao T, Lou J. Aging, cell senescence, the pathogenesis and targeted therapies of intervertebral disc degeneration[J]. Frontiers in Pharmacology, 2023, 14: 1172920. [33] Zhang Y, Yang B, Wang J, et al. Cell senescence: a nonnegligible cell state under survival stress in pathology of intervertebral disc degeneration[J]. Oxidative Medicine and Cellular Longevity, 2020, 2020(1): 9503562. [34] Song C, Zhou Y, Cheng K, et al. Cellular senescence–molecular mechanisms of intervertebral disc degeneration from an immune perspective[J]. Biomedicine & Pharmacotherapy, 2023, 162: 114711. [35] Ngo K, Patil P, McGowan SJ, et al. Senescent intervertebral disc cells exhibit perturbed matrix homeostasis phenotype[J]. Mechanisms of Ageing and Development, 2017, 166: 16-23. [36] Amor C, Feucht J, Leibold J, et al. Senolytic CAR T cells reverse senescence-associated pathologies[J]. Nature, 2020, 583(7814): 127-132. [37] Colella F, Garcia JP, Sorbona M, et al. Drug delivery in intervertebral disc degeneration and osteoarthritis: selecting the optimal platform for the delivery of disease-modifying agents[J]. Journal of Controlled Release, 2020, 328: 985-999. [38] Liu W, Ma Z, Wang Y, et al. Multiple nano-drug delivery systems for intervertebral disc degeneration: Current status and future perspectives[J]. Bioactive Materials, 2023, 23: 274-299. [39] Sercombe L, Veerati T, Moheimani F, et al. Advances and challenges of liposome assisted drug delivery[J]. Frontiers in Pharmacology, 2015, 6: 286. [40] Hua S, Cabot PJ. Targeted nanoparticles that mimic immune cells in pain control inducing analgesic and anti-inflammatory actions: a potential novel treatment of acute and chronic pain condition[J]. Pain Physician, 2013, 16(3): E199. [41] Khalifeh M. Incorporation of ionizable lipids into the outer shell of lipid-coated calcium phosphate nanoparticles boosts cellular mRNA delivery[J]. International Journal of Pharmaceutics, 670 (2025): 125109. [42] Bai CH, Wang C, Lu Y. Novel vectors and administrations for mRNA delivery[J]. Small,2023,19(46): 2303713. [43] Wang H, Ding Y, Zhang W, et al. Oxymatrine liposomes for intervertebral disc treatment: formulation, in vitro and vivo assessments[J]. Drug Des Dev Ther, 2020, 14: 921-931. [44] Banala RR, Vemuri SK, Dar GH, et al. Efficiency of dual siRNA-mediated gene therapy for intervertebral disc degeneration (IVDD)[J]. The Spine Journal, 2019, 19(5): 896-904. [45] Karimi M, Mashreghi M, Shokooh SS, et al. Spectrofluorometric method development and validation for the determination of curcumin in nanoliposomes and plasma[J]. Journal of Fluorescence, 2020, 30: 1113-1119. [46] Joanitti GA, Sawant RS, Torchilin VP, et al. Optimizing liposomes for delivery of Bowman-Birk protease inhibitors-platforms for multiple biomedical applications[J]. Colloids and Surfaces B: Biointerfaces, 2018, 167: 474-482. [47] 王义成.多功能发光聚合物纳米材料的设计、合成及生物医学应用[D].南京:南京邮电大学, 2021. [48] Arul MR, Zhang C, Alahmadi I, et al. Novel injectable fluorescent polymeric nanocarriers for intervertebral disc application[J]. Journal of Functional Biomaterials, 2023, 14(2): 52. [49] Cai Y, Qi J, Lu Y, et al. The in vivo fate of polymeric micelles[J]. Advanced Drug Delivery Reviews, 2022, 188: 114463. [50] Guliy OI, Fomin AS, Zhnichkova EG, et al. Polymeric micelles for targeted drug delivery systems[M]//Pharmaceutical Nanobiotechnology for Targeted Therapy. Cham: Springer International Publishing, 2022: 521-559. [51] Yu C, Li D, Wang C, et al. Injectable kartogenin and apocynin loaded micelle enhances the alleviation of intervertebral disc degeneration by adipose-derived stem cell[J]. Bioactive Materials, 2021, 6(10): 3568-3579. [52] Xia K, Li D, Wang C, et al. An esterase-responsive ibuprofen nano-micelle pre-modified embryo derived nucleus pulposus progenitor cells promote the regeneration of intervertebral disc degeneration[J]. Bioactive Materials, 2023, 21: 69-85. [53] Meena J, Gupta A, Ahuja R, et al. Inorganic nanoparticles for natural product delivery: a review[J]. Environmental Chemistry Letters, 2020, 18: 2107-2118. [54] Wu S, Shi Y, Jiang L, et al. N‐acetylcysteine‐derived carbon dots for free radical scavenging in intervertebral disc degeneration[J]. Advanced Healthcare Materials, 2023, 12(24): 2300533. [55] Yang L, Yu C, Fan X, et al. Dual-dynamic-bond cross-linked injectable hydrogel of multifunction for intervertebral disc degeneration therapy[J]. Journal of Nanobiotechnology, 2022, 20(1): 433. [56] 苏永昆, 孙红, 刘淼, 等. 开发纳米水凝胶系统搭载新型抗氧化剂与抗氧化剂联合治疗椎间盘退变[J]. 中国组织工程研究, 2025, 29(34): 7376. [57] Chang H, Cai F, Zhang Y, et al. Silencing gene‐engineered injectable hydrogel microsphere for regulation of extracellular matrix metabolism balance[J]. Small Methods, 2022, 6(4): 2101201. [58] Wang J, Huang Y, Luan T, et al. Hydrogel and microgel collaboration for spatiotemporal delivery of biofactors to awaken nucleus pulposus-derived stem cells for endogenous repair of disc[J]. Small, 2024,20(49): 2404732.