Abstract:Magnetic Fe3O4/mesoporous silica (Fe3O4/mSiO2) composite microspheres combine the advantage of magnetism performance of Fe3O4 nanoparticles and the space loading capacity of mesoporous silica, which therefore are widely explored for uses in biomedicine. In this paper the synthetic methods of Fe3O4/mSiO2 composite microspheres such as core-shell type, hollow type and rattle type were introduced. The applications of Fe3O4/mSiO2 composite microspheres in targeting drug-loading system, magnetic resonance imaging (MRI), magnetic mediated hyperthermia drug-loading system and biological separation are summarized as well.
聂立波, 杨鸿成, 姜鹏飞. 磁性Fe3O4/mSiO2复合微球的研究进展[J]. 中国生物医学工程学报, 2017, 36(3): 348-353.
Nie Libo, Yang Hongcheng, Jiang Pengfei. The Research Progress of Magnetic Fe3O4/Mesoporous Silica Composite Microspheres. Chinese Journal of Biomedical Engineering, 2017, 36(3): 348-353.
[1] Xu Hong, Cui Longlan, Tong Naihu, et al. Development of high magnetization Fe3O4/polystyrene/silica nanospheres via combined miniemulsion/emulsion polymerization [J]. J Am Chem Soc, 2006, 128(49): 15582-15583. [2] Liu Jia, Sun Zhenkun, Deng Yonghui, et al. Highly water-dispersible biocompatible magnetite particles with low cytotoxicity stabilized by citrate groups [J]. Angew Chem, 2009, 121(32): 5989-5993. [3] Gao Fei, Botella P, Corma A, et al. Monodispersed mesoporous silica nanoparticles with very large pores for enhanced adsorption and release of DNA [J]. J Phys Chem B, 2009, 113(6): 1796-1804. [4] Wang Yanyan, Li Bin, Zhang Liming, et al. Multifunctional magnetic mesoporous silica nanocomposites with improved sensing performance and effective removal ability toward Hg(II) [J]. Langmuir, 2012, 28(2): 1657-1662. [5] Chen Hemei, Xu Xiuqing, Yao Ning, et al. Facile synthesis of C8-functionalized magnetic silica microspheres for enrichment of low-concentration peptides for direct MALDI-TOF MS analysis [J]. Proteomics, 2008, 8(14): 2778-2784. [6] Wang Yao, Gu Hongchen. Core-shell-type magnetic mesoporous silica nanocomposites for bioimaging and therapeutic agent delivery [J]. Adv Mater, 2015, 27(3): 576-585. [7] Wu Pinggui, Zhu Jianhua, Xu Zhenghe. Template-assisted synthesis of mesoporous magnetic nanocomposite particles [J]. Adv Funct Mater, 2004, 4(14): 345-351. [8] Zhang Jixi, Li Xu, Rosenholma JM, et al. Synthesis and characterization of pore size-tunable magnetic mesoporous silica nanoparticles [J]. J Colloid Interface Sci, 2011, 361(1): 16-24. [9] Liu Hongfei, Ji Shengfu, Yang Hao, et al. Ultrasonic-assisted ultra-rapid synthesis of monodisperse meso-SiO2@Fe3O4 microspheres with enhanced mesoporous structure [J]. Ultrason Sonochem, 2014, 21(2): 505-512. [10] Wu Huixia, Zhang Shengjian, Zhang Jiamin, et al. A hollow-core, magnetic, and mesoporous double shell nanostructure: In situ decomposition/reduction synthesis, bioimaging, and drug-delivery properties [J]. Adv Funct Mater, 2011, 21(10): 1850-1862. [11] Gai Shili, Yang Piaoping, Li Chunxia, et al. Synthesis of magnetic, up-conversion luminescent, and mesoporous core-shell-structured nanocomposites as drug carriers [J]. Adv Funct Mater, 2010, 20(7): 1166-1172. [12] Shen Shuling, Wu Wei, Guo Kai, et al. A novel process to synthesize magnetic hollow silica microspheres [J]. Colloids Surf A Physicochem Eng Asp, 2007, 311: 99-105. [13] Wu Huixia, Zhang Shengjian, Zhang Jiamin, et al. A hollow-core, magnetic, and mesoporous double shell nanostructure: In situ decomposition/reduction synthesis, bioimaging, and drug-delivery properties [J]. Adv Funct Mater, 2011, 21(10): 1850-1862. [14] Lu Feng, Popa A, Zhou Shiwei, et al. Iron oxide-loaded hollow mesoporous silica nanocapsules for controlled drug release and hyperthermia [J]. Chem Commun, 2013,49:11436-11438. [15] Yue Qin, Li Jialuo, Luo Wei, et al. An Interface coassembly in biliquid phase: Toward core-shell magnetic mesoporous silica microspheres with tunable pore size [J]. Journal of the American Chemical Society, 2015, 137(41): 13282 -13289. [16] Zhao Wenru, Chen Hangrong, Li Yongsheng, et al. Uniform rattle-type hollow magnetic mesoporous spheres as drug delivery carriers and their sustained-release property [J]. Adv Funct Mater, 2008, 18(18): 2780-2788. [17] Chen Yu, Chen Hangrong, Zeng Deping, et al. Core/shell structured hollow mesoporous nanocapsules: A potential platform for simultaneous cell imaging and anticancer drug delivery [J]. ACS Nano, 2010, 10(4): 6001-6013. [18] 顾宁, 侯仰龙, 李颖, 等. 生物医用磁性纳米材料与器[M]. 北京: 化学工业出版社, 2013: 264-267. [19] Xianjun Tan, Liujia Lu, Lingzhi Wang, et al. Facile synthesis of bimodal mesoporous Fe3O4@SiO2 composite for efficient removal of methylene blue [J]. Eur J Inorg Chem, 2015, 2928-2933. [20] Tao Cuilia,Zhu Yufang. Magnetic mesoporous silica nanoparticles for potential delivery of chemotherapeutic drugs and hyperthermia [J]. Dalton Trans, 2014,43: 15482-15490. [21] Dan Shao, Jing Li, Xiao Zheng, et al. Janus “nano-bullets” for magnetic targeting liver cancer chemotherapy[J]. Biomaterials, 2016, 100: 118-133. [22] Chen Weihai, Luo Guofeng, Lei Qi, et al. Rational design of multifunctional magnetic mesoporous silica nanoparticle for tumor-targeted magnetic resonance imaging and precise therapy[J]..Biomaterials, 2016, 76: 87-101. [23] Zhenhua Li, Kai Dong, Sa Huang, et al. A smart nanoassembly for multistage targeted drug delivery and magnetic resonance imaging[J]. Adv Funct Mater, 2014, 24: 3612-3620. [24] Na HB, Song IC, Hyeon T, et al. Inorganic nanoparticles for MRI contrast agents [J]. Adv Mater, 2009, 21(21): 2133-2148. [25] Chen Yu, Chen Hangrong, Zhang Shengjian, et al. Multifunctional mesoporous nanoellipsoids for biological bimodal imaging and magnetically targeted delivery of anticancer drugs [J]. Adv Funct Mater, 2011, 21(2): 270-278. [26] Kim J, Kim HS, Lee N, et al. Multifunctional uniform nanoparticles composed of a magnetite nanocrystal core and a mesoporous silica shell for magnetic resonance and fluorescence imaging and for drug delivery [J]. Angew Chem Int Ed, 2008,47: 8438-8441. [27] Kobayashi T. Cancer hyperthermia using magnetic nanoparticles [J]. Biotechnol J, 2011, 6(11): 1342-1347. [28] Lee N, Yoo D, Ling Daishun, et al. Iron oxide based nanoparticles for multimodal imaging and magnetoresponsive therapy[J]. Chem Rev, 2015, 115: 10637 -10689. [29] Guo Wei, Yang Chunyu, Lin Huiming, et al. P(EO-co-LLA) functionalized Fe3O4@mSiO2 nanocomposites for thermo/pH responsive drug controlled release and hyperthermia[J]. Dalton Trans, 2014, 43: 18056-18065. [30] Hu Juan, Huang Shaojie, Huang Xiao, et al. Superficially mesoporous Fe3O4@SiO2 core shell microspheres: Controlled syntheses and attempts in protein separations [J]. Microporous and Mesoporous Materials, 2014, 197: 180-184. [31] Yao Xianxian, Niu Xingxing, Ma Kexin, et al. Graphene quantum dots-capped magnetic mesoporous silica nanoparticles as a multifunctional platform for controlled drug delivery, magnetic hyperthermia, and photothermal therapy[J]. Small, 13 Oct, 2016 [Epub ahead of print]. [32] Sheng Wei, Wei Wei, Li Junjian, et al. Amine-functionalized magnetic mesoporous silica nanoparticles for DNA separation[J]. Applied Surface Science, 2016, 387: 1116-1124. [33] Hu Juan, Huang Shaojie, Huang Xiao, et al. Superficially mesoporous Fe3O4@SiO2 core shell microspheres: Controlled syntheses and attempts in protein separations[J]. Microporous and Mesoporous Materials, 2014, 197: 180-184. [34] Chen Yu, Chen Hangrong, Guo Limin, et al. Hollow/rattle-type mesoporous nanostructures by a structural difference-based selective etching strategy [J]. ACS Nano, 2010, 4(1): 529-539. [35] Zhang Yihe, Su Zisheng, Li Bin, et al. Recyclable magnetic mesoporous nanocomposite with improved sensing performance toward nitrite[J]. ACS Appl Mater Interfaces, 2016, 8: 12344 -12351. [36] Liu Shasha, Li Yan, Deng Chunhui, et al. Preparation of magnetic core-mesoporous shell microspheres with C8-modified interior pore-walls and their application in selective enrichment and analysis of mouse brain peptidome [J]. Proteomics, 2011, 11(23): 4503-4513. [37] Deng Yonghui, Qi Dawei, Deng Chunhui, et al. Superparamagnetic high-magnetization microspheres with an Fe3O4@SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins [J]. J Am Chem Soc, 2008, 130(1): 28-29. [38] Lu Hongzhi, Xu Shoufang. Mesoporous structured estrone imprinted Fe3O4@SiO2@mSiO2 for highly sensitive and selective detection of estrogens from water samples by HPLC[J]. Talanta, 2015,144: 303-311.