Abstract:To overcome the obstacle of wire winding and motion restraint of aquatic animal robots, a wireless remote control system for carp robot′s brain electric stimulation was designed in this study. The system hardware included the wireless communication module, the electric stimulation signal generation module and the power supply module. The system software included the serial port communication setting and the motion mode selection. In this study, the brain electrode was implanted and sealed on the surface of the skull cavity, and the radio stimulator was placed in the waterproof package, and the underwater wireless stimulator mounted on the carp robot was remotely controlled by the upper computer for electrical stimulation. The electric stimulator was used to send signals through the electrodes to stimulate the brain motion area and control the movement of carp robots. Then the carp robots (n=10) were placed in the water maze for underwater experiments. The results showed that the forward, left and right steering movements of carp robots could be controlled by this system, with success rates of 60%, 70%, and 80% respectively. Our study indicated that this system and application methods were effective and feasible for the underwater wireless control of carp robots.
彭勇, 王婷婷, 闫艳红, 陈志旺, 温淑焕, 韩晓晓, 赵洋, 刘佳宁, 张乾. 鲤鱼机器人无线遥控系统设计与应用[J]. 中国生物医学工程学报, 2019, 38(4): 431-437.
Peng Yong, Wang Tingting, Yan Yanhong, Chen Zhiwang, Wen Shuhuan, Han Xiaoxiao, Zhao Yang, Liu Jianing, Zhang Qian. Design and Application of the Wireless Remote Control System of Carp Robots. Chinese Journal of Biomedical Engineering, 2019, 38(4): 431-437.
[1] 苏学成,槐瑞托,杨俊卿,等. 控制动物机器人运动行为的脑机制和控制方法[J]. 中国科学:信息科学,2012,42(9):1130-1146. [2] Lifht RU, Chaffee EL. Electrical excitation of the nervous system-introducing a new principle: remote control [J]. Science,1934,79(2048): 299-300. [3] 朱志坚,王浩,王文波,等. 动物机器人的遥测遥控技术研究进展[J]. 电气与自动化,2013,42(3): 151-154. [4] Brown S. Stealth sharks to patrol the high seas [J]. New Sci, 2006, 189(2541): 30-31. [5] Lehmkuhle MJ, Vetter RJ, Parikh H, et al. Implantable neural interfaces for characterizing population responses to odorants and electrical stimuli in the nurse shark, Ginglymostoma cirratum[J]. Chem Senses,2006,31(5): A14-A14. [6] 袁海.最棒的特工[N].重庆晚报,2005-12-30. [7] Sato H, Berry CW, Peeri Y, et al. Remote radio control of insect flight[J]. Front Integr Neurosci, 2009,3(2): 24. [8] Kobayashi N, Yoshida M, Matsumoto N, et al. Artificial control of swimming in goldfish by brain stimulation: Confirmation of the midbrain nuclei as the swimming center[J]. Neuroscience Letters, 2009, 452(1): 42-46. [9] 王勇,苏学成,槐瑞托,等. 动物机器人遥控导航系统[J]. 机器人,2006, 28(2): 183-186. [10] 卞文超,苏学成. 放飞世界首只机器人鸟[N/OL].大众日报,2007-03-02. [11] 蔡雷,王浩,王文波,等. 鸽子慢性电刺激用电极转接装置及其固定方法[J]. 动物学杂志,2014, 49(2): 280-285. [12] 张韶岷,王鹏,江君,等. 大鼠遥控导航及其行为训练系统的研究[J]. 中国生物医学工程学报,2007, 26(6): 830-836. [13] Zhang Bin, Zhuang Liujing, Qin Zhen, et al. A wearable system for olfactory electrophysiological recording and animal motion control [J]. Journal of Neuroscience Methods, 2018, 307(2018): 221-229. [14] 谢合瑞. 微小型多通道生物机器人遥控刺激系统的研制[D]. 南京:南京航空航天大学,2009. [15] 戴威. 小动物电生理信号无线记录系统与遥控刺激系统研究 [D]. 南京:南京航空航天大学,2017. [16] 严霞,倪化生,黄炫. ZigBee星形网络在动物机器人中的应用[J]. 电子技术,2010,47(8): 19-25. [17] 陈臣. 应用于昆虫的无线微型刺激系统关键技术的研究[D]. 杭州:杭州电子科技大学,2017. [18] 彭勇,巨亚坤,沈伟超,等. 一种电刺激装置防水包[P]. 中国专利: ZL 2015 2 0260297.5. 2015-4-27. [19] 张春帅,郭策,蔡雷. 微小型动物机器人遥控刺激系统的研制[J].计算机技术与应用,2011,37(5): 134-137. [20] 陈希. 基于恒流源的大鼠神经刺激系统的研制[D]. 杭州:浙江大学,2014. [21] 朱志坚,王浩,韩济华. 基于3G网络通信的动物机器人遥控刺激系统的研制[J]. 自动化与仪器仪表,2017(10): 71-74.