Abstract:Pulmonary airway is the only access between the human body and the external environment, therefore the anatomy information of pulmonary airway is helpful for diagnosis of respiratory system disease. Computed tomography (CT) is one of the main methods for respiratory disease diagnosis. However, due to the large amounts of patients and images, manual reading of CT images is tedious and time-consuming. The automatic segmentation and extraction of pulmonary airway tree is the precondition of automatic analysis and computer-assisted diagnosis. Hence, according to the research progress of segmentation of pulmonary airway in recent years, we first introduced the background and the meaning of the airway segmentation. Then we analyzed the traditional methods, the method based on tube structure detection and machine learning, and the problem they met. Finally, we proposed that integrating the step of segmentation and leakage limitation can improve the accuracy and the number of branch, which means segmenting as many airways as possible at first and then eliminating the leakage.
段辉宏, 龚敬, 王丽嘉, 李鑫宇, 聂生东. 肺部CT图像气管树分割技术研究进展[J]. 中国生物医学工程学报, 2018, 37(6): 739-748.
Duan Huihong, Gong Jing, Wang Lijia, Li Xinyu, Nie Shengdong. A Review of Segmentation of Pulmonary Airway in Lung CT Scans. Chinese Journal of Biomedical Engineering, 2018, 37(6): 739-748.
[1] Wang Chen, Xu Jiangying, Yang Lan, et al. Prevalence and risk factors of chronic obstructive pulmonary diseases in China (The China Pulmonary Health [CPH] study): A national cross-sectional study[J]. The Lancet, 2018, 391(10131): 1706-1717. [2] 中华人民共和国国家卫生和计划生育委员会. 中国卫生和计划生育统计年鉴 [M]. 北京:中国协和医科大学出版社, 2016: 279-306. [3] Decramer M, Janssens W, Miravitlles M. Chronic obstructive pulmonary disease [J]. Lancet, 2012, 379(9823): 141-151. [4] Zaas D, Wise R, Wiener C. Airway obstruction is common but unsuspected in patients admitted to a general medicine service [J]. Chest, 2004, 125(1): 106-111. [5] Davidson W, Bai TR. Lung structural changes in chronic obstructive pulmonary diseases [J]. Curr Drug Targets Inflamm Allergy, 2005, 4(6): 643-649. [6] Hasegawa M, Nasuhara Y, Onodera Y, et al. Airflow limitation and airway dimensions in chronic obstructive pulmonary disease [J]. American Journal of Respiratory and Critical Care Medicine, 2006, 173(12): 1309-1315. [7] Kuwano K, Bosken CH, Pare PD, et al. Small airways dimensions in asthma and in chronic obstructive pulmonary disease [J]. Am Rev Respir Dis, 1993, 148(5): 1220-1225. [8] Sonka M, Park W, Huffman EA. Rule-based detection of intrathoracic airway trees [J]. IEEE Transactions on Medical Imaging, 1996, 15(3): 314-326. [9] Petersen J, Nielsen M, Lo P, et al. Optimal surface segmentation using flow lines to quantify airway abnormalities in chronic obstructive pulmonary disease [J]. Medical Image Analysis, 2014, 18(3): 531-541. [10] Yu KC, Gibbs JD, Graham MW, et al. Image-based reporting for bronchoscopy [J]. Journal of Digital Imaging, 2010, 23(1): 39-50. [11] Mori K, Hasegawa J, Toriwaki J, et al. Recognition of bronchus in three-dimensional X-ray CT images with applications to virtualized bronchoscopy system [C]//Proceedings of 13th International Conference on Pattern Recognition. Vienna: IEEE, 1996, 3: 528-532. [12] Nakamura M, Wada S, Miki T, et al. Automated segmentation and morphometric analysis of the human airway tree from multidetector CT images [J]. J Physiol Sci, 2008, 58(7): 493-498. [13] Fang Chaoqun, Wang Xiuying, Xia Yong, et al. Airway segmentation for low-contrast CT images from combined PET/CT scanners based on airway modeling and seed prediction [J]. IFAC-Papers Online, 2009, 7(Part 1): 198-203. [14] 姜慧研, 张晔. 基于改进的区域生长法的气管与支气管分割 [J]. 东北大学学报(自然科学版), 2009, 30(2): 191-194. [15] Lai Kai, Zhao Peng, Huang Yufeng, et al. Automatic 3D segmentation of lung airway tree: A novel adaptive region growing approach [C] //The 3rd International Conference on Bioinformatics and Biomedical Engineering. Beijing: IEEE, 2009:132-136. [16] Lee J, Reeves A. Segmentation of the airway tree from chest CT using local volume of interest [C] //Proceedings of Second International Workshop on Pulmonary Image Analysis. London: Create Space Independent Publishing Platform, 2009: 333-340. [17] Kitasaka T, Mori K, Suenaga Y, et al. A method for segmenting bronchial trees from 3D chest X-ray CT images [C] // Medical Image Computing and Computer-assisted Intervention-miccai, International Conference. Montréal: Springer International Publishing, 2003, 2879: 603-610. [18] Pinho R, Luyckx S, Sijbers J. Robust region growing based intrathoracic airway tree segmentation [C] //The 2nd International Workshop on Pulmonary Image Analysis. London: Create Space Independent Publishing Platform, 2009: 261-271. [19] 赵鹏, 冯焕清, 李传富, 等. 一种基于参数自适应的CT图像肺气道树分割方法 [J]. 北京生物医学工程, 2009, 28(5): 454-457. [20] Wiemker R, Bülow T, Lorenz C. A simple centricity-based region growing algorithm for the extraction of airways [C]//The 2nd International workshop on pulmonary image analysis. London: CreateSpace Independent Publishing Platform, 2009: 309-314. [21] 王雷, 高欣, 张桂芝. 形态学膨胀的3D区域生长气管分割算法 [J]. 生物医学工程学杂志, 2013, 30(4): 679-683. [22] Gao Dezhi, Gao Xin, Ni Caifang, et al. MGRG-morphological gradient based 3D region growing algorithm for airway tree segmentation in image guided intervention therapy [C] // International Symposium on Bioelectronics and Bioinformations 2011. Suzhou: IEEE, 2011: 76-79. [23] Fabijańska A. Two-pass region growing algorithm for segmenting airway tree from MDCT chest scans [J]. Computerized Medical Imaging and Graphics, 2009, 33(7): 537-546. [24] Masutani Y, Schiemann T, Höhne KH. Vascular shape segmentation and structure extraction using a shape-based region-growing model [C] //International Conference on Medical Image Computing and Computer-Assisted Intervention. Beilin:Springer, Berlin, Heidelberg, 1998: 1242-1249. [25] Aykac D, Hoffman E A, McLennan G, et al. Segmentation and analysis of the human airway tree from three-dimensional X-ray CT images [J]. IEEE Transactions on Medical Imaging, 2003, 22(8): 940-950. [26] Kiraly AP, Higgins WE, McLennan G, et al. Three-dimensional humen airway segmentation methods for clinical virtual bronchoscopy [J]. Academic Radiology, 2002, 9: 1153-1169. [27] 王昌, 黄煜峰, 王兴家, 等. 最优阈值生长和形态学结合的肺气道树分割方法 [J]. 北京生物医学工程, 2010, 29(3): 241-244. [28] 李翠芳, 任彦华, 王远军, 等. 基于CT图像的肺部气管树3D分割方法研究 [J]. 中国医学物理学杂志, 2011, 28(5): 2867-2871. [29] 何瑞华, 陆建峰, 唐立钧. 基于主动轮廓的三维气管树自动分割方法 [J]. 基于主动轮廓的三维气管树自动分割方法, 2016, 33(1): 68-71. [30] 彭双,肖昌炎. 结合区域生长与灰度重建的CT图像肺气管树分割 [J]. 中国图象图形学报, 2014, 19(9): 1377-1383. [31] Irving B, Taylor P, Todd-pokropek A. 3D segmentation of the airway tree using a morphology based method [C] // Proceedings of 2nd International Workshop on Pulmonary Image Analysis. London: Create Space Independent Publishing Platform, 2009: 297-307. [32] Fetita CI, Prêteux F, Beigelman-Aubry C, et al. Pulmonary airways: 3-D reconstruction from multislice CT and clinical investigation [J]. IEEE Transactions on Medical Imaging, 2004, 23(11): 1353-1364. [33] Park W, Hoffman E, Sonka M. Segmentation of intrathoracic airway trees: a fuzzy logic approach [J]. IEEE Transactions on Medical Imaging, 1998, 17(4): 489-497. [34] Tschirren J, Hoffman E, McLennan G, et al. Airway tree segmentation using adaptive regions of interest [J]. Spie, 2004, 5369: 117-124. [35] Tschirren J, Huffman EA, McLennan G, et al. Intrathoracic airway trees: Segmentation and airway morphology analysis from low-dose CT scans [J]. IEEE Transactions on Medical Imaging, 2005, 24(12): 1529-1539. [36] Xu Ziyue, Bagci U, Foster B, et al. A hybrid method for airway segmentation and automated measurement of bronchial wall thickness on CT [J]. Medical Image Analysis, 2015, 24(1): 1-17. [37] Yousefi Rizi F, Ahmadian A, Sahba N, et al. A hybrid fuzzy based algorithm for 3D human airway segmentation [C] //The 2nd International Conference on Bioinformatics and Biomedical Engineering. Shanghai: IEEE, 2008: 2295-2298. [38] Rizi FY, Bidgoli JH, Ahmadian A, et al. An efficient fuzzy connectivity method for airway tree segmentation using fuzzy C-mean algorithm [C] //The 4th Kuala Lumpur International Conference on Biomedical Engineering 2008. Beilin:Springer, Berlin, Heidelberg, 2008: 501-505. [39] 彭双,肖昌炎. 结合区域生长与模糊连接度的肺气管树分割 [J]. 计算机工程与应用, 2015, 52(13): 201-205. [40] Schlathoelter T, Lorenz C, Carlsen IC, et al. Simultaneous segmentation and tree reconstruction of the airways for virtual bronchoscopy [J]. Medical Imaging, 2002, 4684: 103-113. [41] Bartz D, Mayer D, Fischer J, et al. Hybrid segmentation and exploration of the human lungs [C]//IEEE Visualization 2003. Seattle: IEEE, 2003: 177-184. [42] 程远熊, 胡罢生, 郝立巍, 等. 一种新的三维气管树提取方法 [J]. 中国医学物理学杂志, 2011, 28(4): 2759-2763. [43] Bauer C, Pock T, Bischof H, et al. Airway tree reconstruction based on tube detection [C] //The 2nd International Workshop on Pulmonary Image Analysis. London: Create Space Independent Publishing Platform, 2009: 203-213. [44] Bauer C, Bischof H, Beichel R. Segmentation of airways based on gradient vector flow [C] // The 2nd International Workshop on Pulmonary Image Analysis. London: Create Space Independent Publishing Platform, 2009: 191-201. [45] Krissian K, Malandain G, Ayache N, et al. Model-based detection of tubular structures in 3D images [J]. Computer Vision and Image Understanding, 2000, 80(2): 130-171. [46] Xu Chenyang, Prince JL. Gradient vector flow: A new external force for snakes [C] //Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Juan: IEEE, 1997: 66-71. [47] Graham MW, Gibbs JD, Cornish DC, et al. Robust 3-D airway tree segmentation for image-guided peripheral bronchoscopy [J]. IEEE Transactions on Medical Imaging, 2010, 29(4): 982-997. [48] 李艳波, 于翔. 三维支气管树分割与中心路径提取算法研究 [J]. 系统仿真学报, 2015, 27(10): 2525-2530. [49] Pu J, Fuhrman C, Good WF, et al. A differential geometric approach to automated segmentation of human airway tree [J]. IEEE Transactions on Medical Imaging, 2011, 30(2): 266-278. [50] Lo P, Sporring J, Ashraf H, et al. Vessel-guided airway tree segmentation: A voxel classification approach [J]. Medical Image Analysis, 2010, 14(4): 527-538. [51] Cover T, Hart P. Nearest neighbor pattern classification [J]. IEEE Transactions on Information Theory, 1967, 13(1): 21-27. [52] Meng Q, Kitasaka T, Nimura Y, et al. Automatic segmentation of airway tree based on local intensity filter and machine learning technique in 3D chest CT volume [J]. International Journal of Computer Assisted Radiology and Surgery, 2017, 12(2): 245-261. [53] Sato Y, Nakajima S, Shiraga N, et al. Three-dimensional multi-scale line filter for segmentation and visualization of curvilinear structures in medical images [J]. Medical Image Analysis, 1998, 2(2): 143-168. [54] Hirano Y, Xu R, Tachibana R, et al. A method for extracting airway trees by using a cavity enhancement filter [C] //The 4th International Workshop on Pulmonary Image Analysis. Toronto: Blackwell Publishing Ltd, 2011: 91-99. [55] Boykov Y, Veksler O, Zabih R. Fast approximate energy minimization via graph cuts [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(11): 1222-1239. [56] Charbonnier JP, Rikxoort EM van, Setio AAA, et al. Improving airway segmentation in computed tomography using leak detection with convolutional networks [J]. Medical Image Analysis,2017, 36: 52-60. [57] Lo P, Van Ginneken B, Reinhardt JM, et al. Extraction of airways from CT (EXACT′09) [J]. IEEE Transactions on Medical Imaging, 2012, 31(11): 2093-2107.