Abstract:The segmentation of left myocardium can be used not only to calculate the volume of left ventricle, but also to evaluate the quality of myocardium, track the movement of myocardium, reconstruct the heart, therefore is appliable for clinical evaluation of cardiac function, which is of great significance for the diagnosis and treatment of myocardial infarction, hypertrophy and other cardiac diseases. Cardiac cine magnetic resonance image is widely used for left myocardial segmentation and functional evaluation, which has high temporal and spatial resolution. However, left myocardium is adjacent to tissues of similar gray scale outside, and may be connected with trabecular and papillary muscles inside, which brings great difficulty to left myocardium segmentation. Great efforts have been made in the left myocardium segmentation algorithm. This paper reviewed the progress on the left myocardial segmentation based on CCMRI. We focused on the new methods, including optical flow method and deep learning following the introduction of traditional methods and its advantages and disadvantages that were summarized and compared. At last, evaluation criteria in common were briefly introduced. In conclusion, segmentation methods based on deep learning has higher accuracy and faster speed than the traditional ones, which is worth of further investigations in the future while problems such as massive data requirements and hyper parameter determination still need to be solved in deep learning.
王慧, 王丽嘉. 基于心脏电影磁共振图像的左心肌分割新进展[J]. 中国生物医学工程学报, 2020, 39(2): 238-246.
Wang Hui, Wang Lijia. New Progress of Left Myocardial Segmentation Based on Cardiac Cine MRI. Chinese Journal of Biomedical Engineering, 2020, 39(2): 238-246.
[1] 胡盛寿,高润霖,刘力生,等. 《中国心血管病报告 2018》 概要[J]. 中国循环杂志, 2019, 34(3): 209-220.
[2] 王莉. 基于灰度不均匀的心脏核磁共振图像左心室分割技术研究[D]. 兰州: 兰州大学, 2017.
[3] Petitjean C, Dacher JN. A review of segmentation methods in short axis cardiac MR images[J]. Med Image Anal, 2011, 15(2): 169-184.
[4] Lynch M, Ghita O, Whelan PF. Left-ventricle myocardium segmentation using a coupled level-set with a priori knowledge[J]. Comput Med Imaging Graph, 2006, 30(4): 255-262.
[5] Lee HY, Codella NC, Cham MD, et al. Automatic left ventricle segmentation using iterative thresholding and an active contour model with adaptation on short-axis cardiac MRI[J]. IEEE Trans Biomed Eng, 2010, 57(4): 905-913.
[6] Huang Su, Liu Jimin, Lee LC, et al. An image-based comprehensive approach for automatic segmentation of left ventricle from cardiac short axis cine MR images[J]. J Digit Imaging, 2011, 24(4): 598-608.
[7] Wang Li, Ma Yurun, Zhan Kun, et al. Automatic left ventricle segmentation in cardiac MRI via level set and Fuzzy C-Means[C]// 2015 2nd International Conference on Recent Advances in Engineering & Computational Sciences (RAECS). New York: IEEE, 2015: 310-315.
[8] Yang Xulei, Song Qing, Su Yi. Automatic segmentation of left ventricle cavity from short-axis cardiac magnetic resonance images[J]. Med Biol Eng Comput, 2017, 55(9): 1563-1577.
[9] Santiago C, Nascimento JC, Marques JS. Fast segmentation of the left ventricle in cardiac MRI using dynamic programming[J]. Comput Methods Programs Biomed, 2018, 154: 9-23.
[10] Hu Huaifei, Liu Haihua, Gao Zhiyong, et al. Hybrid segmentation of left ventricle in cardiac MRI using Gaussian-mixture model and region restricted dynamic programming[J]. Magn Reson Imaging, 2013, 31(4): 575-584.
[11] Wu Yuwei, Wang Yuanquan, Jia Yunde. Segmentation of the left ventricle in cardiac cine MRI using a shape-constrained snake model[J]. Computer Vision and Image Understanding, 2013, 117: 990-1003.
[12] Ma Yurun, Wang Li, Ma Yide, et al. An SPCNN-GVF-based approach for the automatic segmentation of left ventricle in cardiac cine MR images[J]. Int J Comput Assist Radiol Surg, 2016, 11(11): 1951-1964.
[13] Ordas S, Boisrobert L, Huguet M, et al. Active shape models with invariant optimal features (IOF-ASM) application to cardiac MRI segmentation[J]. Computers in Cardiology, 2003, 31: 633-636.
[14] Mitchell SC, Lelieveldt BP, Van Der Geest RJ, et al. Multistage hybrid active appearance model matching: segmentation of left and right ventricles in cardiac MR images[J]. IEEE Trans Med Imaging, 2001, 20(5): 415-423.
[15] Mitchell SC, Bosch J, Lelieveldt BP, et al. 3-D active appearance models: segmentation of cardiac MR and ultrasound images[J]. IEEE Trans Med Imaging, 2002, 21(9): 1167-1178.
[16] Lee HY, Codella N, Cham M, et al. Left ventricle segmentation using graph searching on intensity and gradient and a priori knowledge (lvGIGA) for short-axis cardiac magnetic resonance imaging[J]. J Magn Reson Imaging, 2008, 28(6): 1393-1401.
[17] Liu Yu, Captur G, Moon J C, et al. Distance regularized two level sets for segmentation of left and right ventricles from cine-MRI[J]. Magn Reson Imaging, 2016, 34(5): 699-706.
[18] Yang Cong, Wu Weiguo, Su Yuanqi, et al. Left ventricle segmentation via two-layer level sets with circular shape constraint[J]. Magn Reson Imaging, 2017, 38: 202-213.
[19] Gupta V, Bustamante M, Fredriksson A, et al. Improving left ventricular segmentation in four-dimensional flow MRI using intramodality image registration for cardiac blood flow analysis[J]. Magn Reson Med, 2018, 79(1): 554-560.
[20] Duan Qi, Angelini E, Homma S, et al. Tracking endocardium using optical flow along iso-value curve[J]. IEEE Engineering in Medicine Biology Society, 2006, 1: 707-710.
[21] Fahmy AS, Al-Agamy AO, Khalifa A. Myocardial segmentation using contour-constrained optical flow tracking[C]// Statistical Atlases and Computational Models of the Heart. Imaging and Modelling Challenges. Berlin: Springer-Verlag, 2012: 120-128.
[22] Wang Zhenzhou. Segmentation of the left ventricle in short-axis sequences by combining deformation flow and optical flow[J]. IET Image Processing, 2017, 11(4): 237-244.
[23] Yan Wenjun, Wang Yuanyuan, Li Zeju, et al. Left ventricle segmentation via optical-flow-net from short-axis cine MRI: preserving the temporal coherence of cardiac motion [EB/OL]. arXiv:1810.08753, 2018-10-20/2019-2-18.
[24] Emad O, Yassine IA, Fahmy AS. Automatic localization of the left ventricle in cardiac MRI images using deep learning[C]// 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). New York: IEEE, 2015: 683-686.
[25] Kong Bin, Zhan Yiqiang, Shin M, et al. Recognizing end-diastole and end-systole frames via deep temporal regression network[C]// Medical Image Computing and Computer-Assisted Intervention-MICCAI 2016. Cham: Springer International Publishing, 2016: 264-272.
[26] Zhang Le, Gooya A, Dong Bo, et al. Automated quality assessment of cardiac MR images using convolutional neural networks[C]// Simulation and Synthesis in Medical Imaging. Cham: Springer International Publishing, 2016: 138-145.
[27] Luo Yang, Yang Benqiang, Xu Lisheng, et al. Segmentation of the left ventricle in cardiac MRI using a hierarchical extreme learning machine model[J]. International Journal of Machine Learning and Cybernetics, 2018, 9(10): 1741-1751.
[28] Avendi MR, Kheradvar A, Jafarkhani H. A combined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac MRI[J]. Med Image Anal, 2016, 30: 108-119.
[29] Ngo TA, Lu Z, Carneiro G. Combining deep learning and level set for the automated segmentation of the left ventricle of the heart from cardiac cine magnetic resonance[J]. Med Image Anal, 2017, 35: 159-171.
[30] Yang Heran, Sun Jian, Li Huibin, et al. Deep fusion net for multi-atlas segmentation: Application to cardiac MR images[C]// Medical Image Computing and Computer-Assisted Intervention-MICCAI 2016. Cham: Springer International Publishing, 2016: 521-528.
[31] Yang Heran, Sun Jian, Li Huibin, et al. Neural multi-atlas label fusion: Application to cardiac MR images[J]. Med Image Anal, 2018, 49: 60-75.
[32] Romaguera LV, Romero FP, Filho CF, et al. Myocardial segmentation in cardiac magnetic resonance images using fully convolutional neural networks[J]. Biomedical Signal Processing and Control, 2018, 44: 48-57.
[33] Tan LK, Liew YM, Lim E, et al. Convolutional neural network regression for short-axis left ventricle segmentation in cardiac cine MR sequences[J]. Med Image Anal, 2017, 39: 78-86.
[34] Bernard O, Lalande A, Zotti C, et al. Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: Is the problem solved?[J]. IEEE Trans Med Imaging, 2018, 37(11): 2514-2525.
[35] Yang Xulei, Zeng Zeng, Yi Su. Deep convolutional neural networks for automatic segmentation of left ventricle cavity from cardiac magnetic resonance images[J]. IET Computer Vision, 2017, 11(8): 643-649.
[36] Curiale AH, Colavecchia FD, Mato G. Automatic quantification of the LV function and mass: A deep learning approach for cardiovascular MRI[J]. Comput Methods Programs Biomed, 2019, 169: 37-50.
[37] Zotti C, Luo Z, Humbert O, et al. GridNet with automatic shape prior registration for automatic MRI cardiac segmentation[C]// Statistical Atlases and Computational Models of the Heart. ACDC and MMWHS Challenges. Cham: Springer International Publishing, 2018: 73-81.
[38] Khened M, Alex V, Krishnamurthi G. Densely connected fully convolutional network for short-axis cardiac cine MR image segmentation and heart diagnosis using random forest[C]// Statistical Atlases and Computational Models of the Heart. ACDC and MMWHS Challenges. Cham: Springer International Publishing, 2018: 140-151.
[39] Khened M, Kollerathu V A, Krishnamurthi G. Fully convolutional multi-scale residual DenseNets for cardiac segmentation and automated cardiac diagnosis using ensemble of classifiers[J]. Med Image Anal, 2019, 51: 21-45.
[40] Vigneault DM, Xie W, Ho CY, et al. -Net (Omega-Net): Fully automatic, multi-view cardiac MR detection, orientation, and segmentation with deep neural networks[J]. Med Image Anal, 2018, 48: 95-106.