A Comparison of Magnetic Response Spectroscopy Quantification Tools between TARQUIN and LCModel
Xue Aiguo1, Liu Renyuan2, Xu Lingyi1, Zhang Bing2, Sun Yu1, Wan Suiren1#*
1 (Medical Electrics Laboratory of Southeastern University, Nanjing 210096, China) 2(Department of Radiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China)
薛爱国, 刘任远, 徐令仪, 张冰, 孙钰, 万遂人. 磁共振波谱量化工具LCModel和TARQUIN的对比[J]. 中国生物医学工程学报, 2016, 35(3): 375-379.
Xue Aiguo, Liu Renyuan, Xu Lingyi, Zhang Bing, Sun Yu, Wan Suiren. A Comparison of Magnetic Response Spectroscopy Quantification Tools between TARQUIN and LCModel. Chinese Journal of Biomedical Engineering, 2016, 35(3): 375-379.
[1] De Graaf RA. Spectroscopic imaging and multivolume localization [M]//De Graaf RA. In Vivo NMR Spectroscopy. Chichester: John Wiley & Sons Ltd, 2007: 349-387. [2] Allen D. Elster Md JHBM. Questions and answers in magnetic resonance imaging [M].(2nd ed). St Louis: Mosby, 2001. [3] Panigrahy A, Nelson MD, Jr Bluml S. Magnetic resonance spectroscopy in pediatric neuroradiology: Clinical and research applications [J]. Pediatr Radiol, 2010, 40(1): 3-30. [4] Rosen Y, Lenkinski RE. Recent advances in magnetic resonance neurospectroscopy [J]. Neurotherapeutics, 2007, 4(3): 330-345. [5] Soares DP, Law M. Magnetic resonance spectroscopy of the brain: review of metabolites and clinical applications [J]. Clin Radiol, 2009, 64(1): 12-21. [6] Poullet JB, Sima DM, Van Huffel S. MRS signal quantitation: A review of time- and frequency-domain methods [J]. J Magn Reson, 2008, 195(2): 134-144. [7] Provencher SW. Estimation of metabolite concentrations from localized in vivo proton NMR spectra [J]. Magn Reson Med, 1993, 30(6): 672-679. [8] Reynolds G, Wilson M, Peet A, et al. An algorithm for the automated quantitation of metabolites in in vitro NMR signals [J]. Magn Reson Med, 2006, 56(6): 1211-1219. [9] Wilson M, Reynolds G, Kauppinen RA, et al. A constrained least-squares approach to the automated quantitation of in vivo 1H magnetic resonance spectroscopy data [J]. Magn Reson Med, 2011, 65(1): 1-12. [10] De Graaf RA. Single volume localization and water suppression [M]//De Graaf RA. In Vivo NMR Spectroscopy.Chichester: John Wiley & Sons Ltd, 2007: 297-348. [11] Sajja BR, Wolinsky JS, Narayana PA. Proton magnetic resonance spectroscopy in multiple sclerosis [J]. Neuroimaging Clin N Am, 2009, 19(1): 45-58. [12] Bertolino A, Callicott JH, Nawroz S, et al. Reproducibility of proton magnetic resonance spectroscopic imaging in patients with schizophrenia [J]. Neuropsychopharmacology, 1998, 18(1): 1-9. [13] Vermathen P, Laxer KD, Matson GB, et al. Hippocampal structures: anteroposterior N-acetylaspartate differences in patients with epilepsy and control subjects as shown with proton MR spectroscopic imaging [J]. Radiology, 2000, 214(2): 403-410. [14] Kantarci K. 1H magnetic resonance spectroscopy in dementia [J]. Br J Radiol, 2007, 80 Spec No 2(S)146-152. [15] Ross BD, Bluml S, Cowan R, et al. In vivo MR spectroscopy of human dementia [J]. Neuroimaging Clin N Am, 1998, 8(4): 809-822. [16] Valenzuela MJ, Sachdev P. Magnetic resonance spectroscopy in AD [J]. Neurology, 2001, 56(5): 592-598. [17] Fountas KN, Kapsalaki EZ, Gotsis SD, et al. In vivo proton magnetic resonance spectroscopy of brain tumors [J]. Stereotact Funct Neurosurg, 2000, 74(2): 83-94. [18] Yang D, Korogi Y, Sugahara T, et al. Cerebral gliomas: prospective comparison of multivoxel 2D chemical-shift imaging proton MR spectroscopy, echoplanar perfusion and diffusion-weighted MRI [J]. Neuroradiology, 2002, 44(8): 656-666. [19] Brateman L. Chemical shift imaging: A review [J]. AJR Am J Roentgenol, 1986, 146(5): 971-980. [20] Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement [J]. Lancet, 1986, 1(8476): 307-310.