Research on Coupling Approaches for Implantable Human Body Communication Technology
Wang Xiaochen1, 2, Zhang Guanghao1, Huo Xiaolin1#*
1(Beijing Key Laboratory of Bioelectromagnetism,Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China) 2(School of Electronics, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China)
汪啸尘, 张广浩, 霍小林. 植入式人体通信技术的耦合方式研究[J]. 中国生物医学工程学报, 2016, 35(3): 365-369.
Wang Xiaochen, Zhang Guanghao, Huo Xiaolin. Research on Coupling Approaches for Implantable Human Body Communication Technology. Chinese Journal of Biomedical Engineering, 2016, 35(3): 365-369.
[1] Zimmerman TG. Personal area networks (PAN): Near-field intra-body communication[D]. Cambridge: Massachusetts Institute of Technology, 1995. [2] IEEE 802.15.6-2012, IEEE Standard for Local and Metropolitan Area Networks - Part 15.6: Wireless Body Area Networks[S]. [3] Kulkarni VV, Lee J, Zhou J, et al. A reference-less injection-locked clock-recovery scheme for multilevel-signaling-based wideband BCC receivers[J]. IEEE Trans Microw Theory, 2014, 62(9): 1856-1866. [4] Cho H, Bae J, Yoo HJ. A 37.5 mu W body channel communication wake-up receiver with injection-locking ring oscillator for wireless body area network[J]. IEEE Trans Circuits-I, 2013, 60(5): 1200-1208. [5] Baldus H, Corroy S, Fazzi A, et al. Human-centric connectivity enabled by body-coupled communications[J]. IEEE Commun Mag, 2009, 47(6): 172-178. [6] Seyedi M, Kibret B, Lai DTH, et al. A survey on intrabody communications for body area network applications[J]. IEEE Trans Biomed Eng, 2013, 60(8): 2067-2079. [7] 汪啸尘, 张广浩, 霍小林. 人体通信技术研究进展[J]. 中国生物医学工程学报, 2015, 34(3): 345-353. [8] Cho N, Yoo J, Song SJ,et al. The human body characteristics as a signal transmission medium for intrabody communication[J]. IEEE Trans Microw Theory, 2007, 55(5): 1080-1086. [9] Callejon MA, Naranjo-Hernandez D, Reina-Tosina J,et al. A comprehensive study into intrabody communication measurements[J]. IEEE Trans Instrum Meas, 2013, 62(9): 2446-2455. [10] Anderson GS, Sodini CG. Body coupled communication: the channel and implantable sensors[C] //2013 IEEE International Conference on Body Sensor Networks. Cambridge: IEEE, 2013: 1-5. [11] 刘志远, 邢珺, 简荣坤, 等. 一种基于可穿戴设备的人体通信分析方法[J]. 传感器与微系统, 2015, 34(12): 36-38;42. [12] Gabriel S, Lau RW, Gabriel C. The dielectric properties of biological tissues: Measurements in the frequency range 10 Hz to 20 GHz[J]. Phys Med Biol, 1996, 41(11): 2251-2269. [13] Shiba K, Enoki N. Capacitive-coupling-based information transmission system for implantable devices: investigation of transmission mechanism[J]. IEEE Trans Biomed Circ S, 2013, 7(5): 674-681. [14] Wegmueller MS, Huclova S, Froehlich J, et al. Galvanic coupling enabling wireless implant communications[J]. IEEE Trans Instrum Meas, 2009, 58(8): 2618-2625. [15] Zhang Kai, Hao Qun, Song Yong, et al. Modeling and characterization of the implant intra-body communication based on capacitive coupling using a transfer function method[J]. Sensors Basel, 2014, 14(1): 1740-1756.