Abstract:Human body communication is a new nonradiofrequency wireless communication technology using human body as the signal propagation path, designed for the communication between healthcare sensor network systems. It is one of three standard methods of wireless body area networks in the IEEE 802156. Human body communication can be classified into two basic types by different coupling: the capacitive coupling and the galvanic coupling. The principle of these two types of human body communications was presented firstly. Then the invention, the development and the actuality of human body communication technology were explained in details, and its strengths and weaknesses were summarized by comparing with other technologies. In the end, three important directions of future development were proposed including the human body communication of implanted devices, the human body communication for wireless power transfer and the human body communication base on magnetic coupling.
[1]Haub C. 2014 world populationdata sheet [EB/OL]. http://www.prb.org/pdf14/2014worldpopulationdatasheet_eng.pdf, 2014-08/2014-12-29.
[2]Hao Y, Foster R. Wireless body sensor networks for healthmonitoring applications [J]. Physiol Meas, 2008, 29(11): R27-R56.
[3]Darwish A, Hassanien AE. Wearable and implantable wireless sensor network solutions for healthcare monitoring [J]. SensorsBasel, 2011, 11(6): 5561-5595.
[4]IEEE 8021562012, IEEE Standard for Local and Metropolitan Area Networks Part 156: Wireless Body Area Networks [S]
[5]Baldus H, Corroy S, Fazzi A, et al. Humancentric connectivity enabled by bodycoupled communications [J]. IEEE Commun Mag, 2009, 47(6): 172-178.
[6]Seyedi M, Kibret B, Lai DTH, et al. A survey on intrabody communications for body area network applications [J]. IEEE Trans Biomed Eng, 2013, 60(8): 2067-2079.
[7]Gabriel S, Lau RW, Gabriel C. The dielectric properties of biological tissues.2. Measurements in the frequency range 10 Hz to 20 GHz [J]. Phys Med Biol, 1996, 41(11): 2251-2269.
[8]Lucev Z, Krois I, Cifrek M. A capacitive intrabody communication channel from 100 kHz to 100 MHz [J]. IEEE Trans Instrum Meas, 2012, 61(12): 3280-3289.
[9]Hachisuka K, Takeda T, Terauchi Y, et al. Intrabody data transmission for the personal area network [J]. Microsyst Technol, 2005, 11(8-10): 1020-1027.
[10]Callejon MA, NaranjoHernandez D, ReinaTosina J, et al. A comprehensive study into intrabody communication measurements [J]. IEEE Trans Instrum Meas, 2013, 62(9): 2446-2455.
[11]Zimmerman TG. Personal area networks (PAN): nearfield intrabody communication [D]. Cambridge: Massachusetts Institute of Technology, 1995.
[12]Handa T, Shoji S, Ike S, et al. A very lowpower consumption wireless ECG monitoring system using body as a signal transmission medium [C] //Digest of Technical Papers of 1997 International Conference on SolidState Sensors and Actuators. Chicago: IEEE, 1997: 1003-1006.
[13]Hachisuka K, Nakata A, Takeda T, et al. Development of wearable intrabody communication devices [J]. Sensor and Actuat APhys, 2003, 105(1): 109-115.
[14]Cho H, Bae J, Yoo HJ. A 375 mu W body channel communication wakeup receiver with injectionlocking ring oscillator for wireless body area network [J]. IEEE Trans CircuitsI, 2013, 60(5): 1200-1208.
[15]Post ER, Reynolds M, Gray M, et al. Intrabody buses for data and power [C] //Digest of Papers of First International Symposium on Wearable Computers. Cambridge: IEEE Computer Soc Press, 1997: 52-55.
[16]Partridge K, Dahlquist B, Veiseh A, et al. Empirical measurements of intrabody communication performance under varied physical configurations [C] //Marks J, Mynatt E, eds. Proceedings of the 14th Annual ACM Symposium on User Interface Software and Technology. Orlando: ACM, 2001: 183-190.
[17]Shinagawa M, Fukumoto M, Ochiai K, et al. A nearfieldsensing transceiver for intrabody communication based on the electrooptic effect [C] //Proceedings of the 20th IEEE Instrumentation and Measurement Technology Conference. Vail: IEEE, 2003: 296-301.
[18]Cho N, Yoo J, Song SJ, et al. The human body characteristics as a signal transmission medium for intrabody communication [J]. IEEE Trans Microw Theory, 2007, 55(5): 1080-1086.
[19]Fujii K, Takahashi M, Ito K. Electric field distributions of wearable devices using the human body as a transmission channel [J]. IEEE Trans Antenn Propag, 2007, 55(7): 2080-2087.
[20]Xu Ruoyu, Zhu Hongjie, Yuan Jie. Electricfield intrabody communication channel modeling with finiteelement method [J]. IEEE Trans Biomed Eng, 2011, 58〖STBZ〗(3): 705-712.
[21]Song Yong, Zhang Kai, Hao Qun, et al. Modeling and characterization of the electrostatic coupling intrabody communication based on MachZehnder electrooptical modulation [J]. Opt Express, 2012, 〖STHZ〗20〖STBZ〗(12): 13488-13500.
[22]张凯, 宋勇, 郝群, 等. 基于MZ电光调制的人体通信温度与频率特性分析 [J]. 北京理工大学学报, 2014, 34(08): 853-857.
[23]Kulkarni VV, Lee J, Zhou J, et al. A referenceless injectionlocked clockrecovery scheme for multilevelsignalingbased wideband BCC receivers [J]. IEEE Trans Microw Theory, 2014, 62(9): 1856-1866.
[24]Hachisuka K, Terauchi Y, Kishi Y, et al. Simplified circuit modeling and fabrication of intrabody communication devices [J]. Sensor Actuat APhy, 2006, 130-131(10): 322-330.
[25]Wegmueller M, Lehner A, Froehlich J, et al. Measurement system for the characterization of the human body as a communication channel at low frequency [C]// Proceedings of 27th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Shanghai: IEEE, 2005: 3502-3505.
[26]Wegmueller MS, Kuhn A, Froehlich J, et al. An attempt to model the human body as a communication channel [J]. IEEE Trans Biomed Eng, 2007, 54(10): 1851-1857.
[27]Wegmueller MS, Oberle M, Felber N, et al. Signal transmission by galvanic coupling through the human body [J]. IEEE Trans Instrum Meas, 2010, 59(4): 963-969.
[28]Song Yong, Hao Qun, Zhang Kai, et al. The simulation method of the galvanic coupling intrabody communication with different signal transmission paths [J]. IEEE Trans Instrum Meas, 2011, 60(4): 1257-1266.
[29]Callejon MA, ReinaTosina J, NaranjoHernandez D, et al. Galvanic coupling transmission in intrabody communication: a finite element approach [J]. IEEE Trans Biomed Eng, 2014, 61(3): 775-783.
[30]Kibret B, Seyedi M, Lai DTH, et al. Investigation of galvaniccoupled intrabody communication using the human body circuit model [J]. IEEE J Biomed Health, 2014, 18(4): 1196-1206.
[31]Xu Ruoyu, Ng WC, Zhu Hongjie, et al. Equation environment coupling and interference on the electricfield intrabody communication channel [J]. IEEE Trans Biomed Eng, 2012, 59(7): 2051-2059.
[32]Chen Ximei, Mak PU, Pun SH, et al. Signal transmission through human muscle for implantable medical devices using galvanic intrabody communication technique [C]//Proceedings of 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. San Diego: IEEE, 2012: 1651-1654.
[33]Bae J, Song K, Lee H, et al. A 024nJ/b wireless bodyareanetwork transceiver with scalable doubleFSK modulation [J]. IEEE J SolidSt Circ, 2012, 47(1): 310-322.
[34]Cavallari R, Martelli F, Rosini R, et al. A survey on wireless body area networks: technologies and design challenges [J]. IEEE Commun Surv Tut, 2014, 16(3): 1635-1657.
[35]Matsushita N, Tajima S, Ayatsuka Y, et al. Wearable key: device for personalizing nearby environment [C] //Digest of Papers of Fourth International Symposium on Wearable Computers. Atlanta: IEEE Computer Soc, 2000: 119-126.
[36]Kado Y. Humanarea networking technology as a universal interfacecommunications through natural human actions: touching, holding, stepping [C] //Digest of Technical Papers of 2009 Symposium on VLSI Circuits. Kyoto: Japan Society Applied Physics, 2009: 102-105.
[37]宋勇, 郝群, 张凯. 人体通信技术及军事应用 [J]. 国防科技, 2013, 34(06): 24-27+36.
[38]冷腾飞, 聂泽东, 王磊. 人体通信信道测试系统的研究与实现 [J]. 传感器与微系统, 2012, 31(11): 17-19,23.
[39]管峰, 聂泽东, 王磊. 一种应用在人体传感器网络的低功耗VCO [J]. 传感器与微系统, 2012, 31(12): 91-93.
[40]Wegmueller MS, Huclova S, Froehlich J, et al. Galvanic coupling enabling wireless implant communications [J]. IEEE Trans Instrum Meas, 2009, 58(8): 2618-2625.
[41]Zhang Kai, Hao Qun, Song Yong, et al. Modeling and characterization of the implant intrabody communication based on capacitive coupling using a transfer function method [J]. SensorsBasel, 2014, 14(1): 1740-1756.
[42]Shiba K, Enoki N. Capacitivecouplingbased information transmission system for implantable devices: investigation of transmission mechanism [J]. IEEE Trans Biomed Circ S, 2013, 7(5): 674-681.
[43]Sasagawa K, Ishii Y, Yokota S, et al. Implantable image sensor based on intrabrain image transmission [C] //35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Osaka: IEEE, 2013: 1863-1866.
[44]Hayami H, Ishii Y, Sasagawa K, et al. Body channel digital pulse transmission for biometric measurement by fully implantable CMOS image sensor [C] //Proceedings of 2014 IEEE International Meeting for Future of Electron Devices. Kyoto: IEEE, 2014: 1-2.
[45]Anderson GS, Sodini CG. Body coupled communication: the channel and implantable sensors [C] //2013 IEEE International Conference on Body Sensor Networks. Cambridge: IEEE, 2013: 1-5.
[46]益和, 张双, 秦雨萍, 等. 植入式人体通信技术发展与未来 [J]. 中国科技论文, 2014, 9(01): 16-23.
[47]Tang Zhide, Sclabassi RJ, Sun Caixin, et al. Transcutaneous battery recharging by volume conduction and its circuit modeling [C] //Proceedings of 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. New York: IEEE, 2006: 3070-3073.
[48]Hackworth SA, Sun M, Sclabassi RJ. A prototype volume conduction platform for implantable devices [C] //Proceedings of 33rd Annual Northeast Bioengineering Conference. Long Isl: IEEE, 2007: 124-125.
[49]Sodagar AM, Amiri P. Capacitive coupling for power and data telemetry to implantable biomedical microsystems [C] //Proceedings of 4th International IEEE/EMBS Conference on Neural Engineering. Antalya: IEEE, 2009: 404-407.
[50]AlKalbani AI, Yuce MR, Redoute JM. A biosafety comparison between capacitive and inductive coupling in biomedical implants [J]. IEEE Antenn Wirel Pr, 2014, 13: 1168-1171.
[51]Ogasawara T, Sasaki A, Fujii K, et al. Human body communication based on magnetic coupling [J]. IEEE Trans Antenn Propag, 2014, 62(2): 804-813.