吴若有, 王德兴, 袁红春, 宫鹏, 秦恩倩. 基于特征编码和卷积神经网络的注意力状态检测[J]. 中国生物医学工程学报, 2020, 39(6): 759-763.
Wu Ruoyou, Wang Dexing, Yuan Hongchun, Gong Peng, Qin Enqian. Attention State Detection Based on Feature Encoding and Convolutional Neural Networks. Chinese Journal of Biomedical Engineering, 2020, 39(6): 759-763.
[1] Luo H,Qiu T,Liu C,et al. Research on fatigue driving detection using forehead EEG based on adaptive multi-scale entropy[J]. Biomedical Signal Processing and Control, 2019, 51: 50-58. [2] Bin F,Shou X,Xiaofeng F. A fatigue driving detection method based on multi facial features fusion[C]// 2019 11th International conference on measuring technology and mechatronics automation (ICMTMA). Qiqihar: IEEE, 2019: 225-229. [3] 胥川,裴赛君,王雪松. 基于无侵入测量指标的个体差异化驾驶疲劳检测[J]. 中国公路学报, 2016, 29(10): 118-125. [4] 王斐,王少楠,王惜慧, 等. 基于脑电图识别结合操作特征的驾驶疲劳检测[J]. 仪器仪表学报, 2014, 35(2): 398-404. [5] 陈骥驰,王宏,王翘秀,等. 基于脑电信号的疲劳驾驶状态研究[J]. 汽车工程, 2018, 40(5): 515-520. [6] Li Wei,He Qichang,Fan Xiumin,et al. Evaluation of driver fatigue on two channels of EEG data[J]. Neuroscience Letters, 2012, 506(2): 235-239. [7] Subha DP,Joseph PK,Acharya R,et al. EEG signal analysis:A survey[J]. Journal of Medical Systems, 2010, 34(2): 195-212. [8] 柳长源,李文强,毕晓君. 基于脑电信号的情绪特征提取与分类[J]. 传感技术学报, 2019, 32(1): 82-88. [9] Wang H,Wu C,Li T,et al. Driving fatigue classification based on fusion entropy analysis combining EOG and EEG[J]. IEEE Access, 2019, 7: 61975-61986. [10] Bashivan P,Rish I,Yeasin M,et al. Learning Representations from EEG with Deep Recurrent-Convolutional Neural Networks [EB/OL]. https://arxiv.org/abs/1511.06448, 2015-11-19/2019-05-10. [11] Shi LC,Jiao Y,Lu BL. Differential entropy feature for EEG-based vigilance estimation[C]//The 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Osaka: IEEE, 2013: 6627-6630. [12] 谢松云,张振中,张伟平,等. 基于ICA的脑电信号去噪方法研究与应用[J]. 中国医学影像技术, 2007(10): 1562-1565. [13] Shen XL,Fan YL. Sleep stage classification based on EEG signals by using improved Hilbert-Huang transform[C] //Applied Mechanics and Materials. Kapellweg8, CH-8806 Baech: Trans Tech Publications Ltd, 2012, 138: 1096-1101. [14] 刘欣. 基于EEG的信号处理和睡眠分期研究[D]. 徐州: 中国矿业大学, 2018. [15] Lecun Y,Bottou L,Bengio Y,et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324. [16] Glorot X,Bengio Y. Understanding the difficulty of training deep feedforward neural networks[C] //Proceedings of the thirteenth international conference on artificial intelligence and statistics. Sardinia: Frontiers, 2010: 249-256. [17] Kingma DP,Ba J. Adam: A method for stochastic optimization [EB/OL]. https://arxiv.org/abs/1412.6980, 2014-12-22/2019-05-10. [18] Krizhevsky A,Sutskever I,Hinton GE. ImageNet classification with deep convolutional neural networks[C] //The 26th Annual Conference on Neural Information Processing Systems. Nevada: NIPS, 2012: 1097-1105. [19] 陈景霞,王丽艳,贾小云,等.基于深度卷积神经网络的脑电信号情感识别[J].计算机工程与应用,2019,55(18):103-110.