网站首页            期刊简介             编委会             投稿指南             期刊订阅             下载中心             在线留言            联系我们             English
  2025年4月4日 星期五  
文章快速检索
中国生物医学工程学报  2020, Vol. 39 Issue (6): 652-666    DOI: 10.3969/j.issn.0258-8021.2020.06.002
  论著 本期目录 | 过刊浏览 | 高级检索 |
基于DenseMedic网络的脑皮层下结构的语义分割
杨斌斌, 刘霖雯, 张唯唯*
(中国医学科学院,北京协和医学院,基础医学研究所,医学分子生物学国家重点实验室,北京 100005)
Semantic Segmentation of Subcortical Brain Structures Based on DenseMedic Network
Yang Binbin, Liu Linwen, Zhang Weiwei*
(State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China)
全文: PDF (14862 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 脑皮层下结构分割问题是神经科及其他相关疾病计算机辅助诊断和治疗的基础。通过分割和分析核磁共振图像中的脑结构,可以对自闭症谱系障碍、脑卒中、脑肿瘤等疾病进行早期诊断和治疗。为解决精准脑结构分割的问题,基于深度学习基本理论,提出一种DenseMedic网络的核磁共振图像脑皮层下结构的分割算法。首先,OreoDown方法通过较早地增大卷积核的步长增大特征感受野的增长速度,并使用不变尺寸的卷积层夹心式地恢复网络深度,使速度的增加带来有效的感受野增加;其次,DenseMedic使用DenseNet的思想实例化OreoDown框架,通过密集连接的特征提取操作来获取多尺度的上下文信息;最后,在各层中使用混合空洞卷积进一步扩大感受野,解决特征感知过于粗糙的问题。采用Dice相似度系数(DSC)、交并比(IoU)、95% Hausdorff表面距离(HSD95)和平均表面距离(ASD) 4个指标,评价神经网络的分割性能。在公开的IBSR数据集的18例图像上进行实验,算法的4个指标分别达到89.2%、80.7%、1.982和0.882;在公开的MBBrainS18数据集的7例图像上的实验显示,算法的4个指标分别达到88.7%、79.8%、1.249和0.570。实验表明,所提出的算法使脑结构的分割结果与真实结构在区域上有更多的重叠, 在轮廓上更加相似,可以更好地完成各个脑皮层下结构的分割。在临床应用中,对脑皮层下结构的精准分割将有助于准确测量相关疾病诊断的关键指标,并实现快速的计算机辅助治疗。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨斌斌
刘霖雯
张唯唯
关键词 全卷积神经网络阶梯式降采样密集连接混合空洞卷积    
Abstract:Subcortical segmentation is the basis for computer-aided diagnosis and treatment of central nervous system diseases. By segmenting and analyzing the brain structures in MRI image, early diagnosis and treatment of diseases such as autism spectrum disorder, stroke, and brain tumors can be performed. In order to solve the problem of accurate subcortical segmentation, based on the basic theory of deep learning, an algorithm named DenseMedic for subcortical segmentation on MRI image is proposed. First, the OreoDown method increases the growth rate of the characteristic receptive field by increasing the stride of convolutions in early layers, and uses convolutions with constant input and output sizes to restore the network depth in a sandwich-like manner, so that the increase in growth rate brings an effective receptive field increase. Second, DenseMedic uses the idea of DenseNet to instantiate the OreoDown framework. Multi-scale context information is obtained through densely connected feature extracting operations. Finally, hybrid dilated convolution is utilized in each layer to further expand the receptive field and solve the problem of rough feature extraction. Four metrics namely Dice similarity coefficient (DSC), Intersection over Union (IoU), 95% Hausdorff surface distance (HSD95) and the average surface distance (ASD) were used to evaluate the segmenting performance of the neural networks. Experiments perform on the public IBSR dataset (18 subjects of images), in which DenseMedic reached 89.2%, 80.7%, 1.982 and 0.882 respectively in 4 metrics; experiments perform on the public MRBrainS18 dataset (7 subjects of images), in which DenseMedic reached 88.7%, 79.8%, 1.249 and 0.570 respectively in 4 metrics. The experimental results show that the segmented subcortical structures and corresponding ground truths have more overlaps in regions and more similarities in outlines, which indicates that DenseMedic can effectively accomplish the segmentation of major subcortical structures. In clinical applications, the presented DenseMedic will help to accurately measure the key indicators for the central nervous system related diseases and provide rapid computer-aided diagnosis and treatment.
Key wordsfully convolutional network    stair-like downsample    dense connection    hybrid dilated convolutions
收稿日期: 2020-04-16     
PACS:  R318  
基金资助:国家重点实验室专项经费(2060204)
通讯作者: E-mail: weiwei.zhang@ibms.pumc.edu.cn   
引用本文:   
杨斌斌, 刘霖雯, 张唯唯. 基于DenseMedic网络的脑皮层下结构的语义分割[J]. 中国生物医学工程学报, 2020, 39(6): 652-666.
Yang Binbin, Liu Linwen, Zhang Weiwei. Semantic Segmentation of Subcortical Brain Structures Based on DenseMedic Network. Chinese Journal of Biomedical Engineering, 2020, 39(6): 652-666.
链接本文:  
http://cjbme.csbme.org/CN/10.3969/j.issn.0258-8021.2020.06.002     或     http://cjbme.csbme.org/CN/Y2020/V39/I6/652
版权所有 © 2015 《中国生物医学工程学报》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发