Evaluation of Rehabilitation Status of Patients with Chronic Ischemic Stroke Based onQuantitative EEG
Li Cenbo1, Chen Long1*, Gu Bin2, Wang Zhongpeng2, Zhang Xin1, Ming Dong1,2#
1(Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China) 2(College of Precision Instrumental and Optoelectronic Engineering, Tianjin University, Tianjin 300072, China)
摘要康复评估可帮助临床医师了解患者的康复情况,合理制定康复训练方案,提高康复治疗效率。而传统康复评估方法无法及时反应患者的康复情况,实现对患者的动态评估,从而降低了卒中患者康复治疗的效率。为此,本研究引入了定量脑电图(qEEG)这一客观康复评估方法,其具有采集方便,反馈迅速的优点,能快速反映卒中患者的康复情况,弥补传统康复评估方法的不足。共招募了28例慢性缺血性卒中患者,采集患者的脑电数据并计算功率比指数、脑对称性指数和相位同步指数,通过斯皮尔曼相关系数分析这些qEEG与改良barthel指数量表和Fugl-Meyer Motor Assessment(FMA)上肢运动部分之间的相关性。研究结果显示,改良barthel指数量表与使用全局导联的β频段IH-PSI相较于其他qEEG相关性最强,相关系数ρ=0.70,显著性P=0.000 2<0.01,具有统计学意义。FMA上肢运动部分与使用C3、C4、FC3、FC4等4个导联的β频段C3FC3C4FC4-PSI相较于其他qEEG相关性最强,相关系数ρ=0.71,显著性P=0.000 09<0.01,具有统计学意义。综上,使用全局导联的β频段IH-PSI结合改良barthel指数量表,使用局部导联的β频段C3FC3C4FC4-PSI结合FMA上肢运动部分有望实现对慢性缺血性卒中患者动态评估,进而提高卒中患者康复治疗的效率。
Abstract:Rehabilitation assessment can help clinicians to understand patients rehabilitation situation, formulate a reasonable rehabilitation training plan, and improve the efficiency of rehabilitation treatment. However, the traditional rehabilitation evaluation methods cannot timely reflect and dynamically evaluate the rehabilitation situation, which would reduce the efficiency of the rehabilitation treatment of stroke patients. In order to solve the above problems, quantitative electroencephalogram (qEEG), an objective rehabilitation evaluation method, was introduced in this study, which has the advantages of convenient collection and rapid feedback, and can quickly reflect the rehabilitation situation of stroke patients and make up for the shortcomings of traditional rehabilitation assessment methods. In this study, 28 patients with chronic ischemic stroke were enrolled. The EEG data of the patients were collected and thepower ratio index, Brain symmetry index andphase synchrony index were calculated, and Spelman correlation coefficient was used to analyze the correlation between the above-mentioned qEEG and the modified barthel index and the upper extremity motor section of the Fugl-Meyer motor assessment (FMA). The results showed that there was a significant positive correlation between the modified barthel index and the IH-PSI in the β band of the global channel (ρ=0.70 P=0.000 2). The correlation between the modified barthel index and the IH-PSI in the β band of the global channel was the strongest compared with the other qEEG, the correlation coefficient was ρ = 0.70, and P=0.000 2<0.01, which was statistically significant. The correlation between the upper extremity motor section of the FMA and the C3FC3C4FC4-PSI in the β band using four channels of C3, C4, FC3, FC4 was the strongest compared with the other qEEG, the correlation coefficient was ρ=0.71, and P=0.000 09<0.01, which was statistically significant. In summary, the use of the IH-PSI in the β band of the global channel combined with the modified barthel index, the use of the C3FC3C4FC4-PSI in the β band using four channels of C3, C4, FC3, FC4 combined with the upper extremity motor section of the FMA was expected to achieve dynamic assessment of patients with chronic ischemic stroke, and improved the efficiency of rehabilitation treatment for stroke patients.
李岑博, 陈龙, 顾斌, 王仲朋, 张鑫, 明东. 定量脑电图用于慢性缺血性卒中患者康复状态评估[J]. 中国生物医学工程学报, 2022, 41(5): 547-557.
Li Cenbo,Chen Long*,Gu Bin,Wang Zhongpeng,Zhang Xin,Ming Dong,#. Evaluation of Rehabilitation Status of Patients with Chronic Ischemic Stroke Based onQuantitative EEG. Chinese Journal of Biomedical Engineering, 2022, 41(5): 547-557.
[1] Report on Stroke P, Treatment in China Writing G. Brief report on stroke prevention and treatment in China,2019[J]. Chinese Journal of Cerebrovascular Diseases, 2020, 17(5): 272-280. [2] Langhorne P, Coupar F, Pollock A. Motor recovery after stroke: a systematic review[J]. Lancet Neurology, 2009, 8(8): 741-754. [3] Hatem S M, Saussez G, Della Faille M, et al. Rehabilitation of motor function after stroke: a multiple systematic review focused on techniques to stimulate upper extremity recovery[J]. Frontiers in Human Neuroscience, 2016, 10: 442-464. [4] Boyd LA, Hayward KS, Ward NS, et al. Biomarkers of stroke recovery: Consensus-based core recommendations from the stroke recovery and rehabilitation roundtable[J]. International Journal of Stroke, 2017, 12(5): 480-493. [5] Cassidy JM, Cramer SC. Spontaneous and Therapeutic-induced mechanisms of functional recovery after stroke[J]. Translational Stroke Research, 2017, 8(1): 33-46. [6] Cramer Steven C. Repairing the human brain after stroke. II. Restorative therapies [J]. Annals of neurology, 2008, 63 (5): 549-560. [7] Takeuchi N, Izumi SI. Rehabilitation with poststroke motor recovery: a review with a focus on neural plasticity[J]. Stroke Research and Treatment, 2013, 2013: 128641. [8] 白敬,宋爱国,李会军,等.基于工作空间测量的居家脑卒中患者上肢康复训练评估系统[J].仪器仪表学报, 2018, 39(4):74-81. [9] 吴毅. 脑卒中康复的精准评定[J].康复学报, 2016, 26(5): 1-7. [10] 恽晓平. 脑卒中的康复评定--临床常用量表回顾[J].继续医学教育, 2006, 2006(30): 1-3. [11] 王勤鹰, 詹青. 电生理技术应用于卒中康复评估的临床价值[J].神经病学与神经康复学杂志, 2016, 12(3): 161-167. [12] 赵经纬, 张运周, 宿英英. 定量脑电图与脑卒中[J].中华老年心脑血管病杂志, 2012, 14(7): 774-777. [13] Friedman D. Quantitative EEG and cerebral ischemia[J]. Clinical Neurophysiology, 2010, 121(10): 81-81. [14] Cozac V V, Gschwandtner U, Hatz F, et al. Quantitative EEG and Cognitive Decline in Parkinson′s Disease[J]. Parkinsons Disease, 2016, 2016: 1-14. [15] Kopruner V, Pfurtscheller G, Auer LM. Quantitative EEG in normals and in patients with cerebral ischemia[J]. Progress in Brain Research, 1984, 62: 29-50. [16] Finnigan SP, Rose SE, Walsh M, et al. Correlation of quantitative EEG in acute ischemic stroke with 30-day NIHSS score: comparison with diffusion and perfusion MRI[J]. Stroke: Journal of the American Heart Association, 2004, 35(4): 899-903. [17] Simon F, Andrew W, Stephen R. Defining abnormal slow EEG activity in acute ischaemic stroke: delta/alpha ratio as an optimal QEEG index[J]. Clinical neurophysiology: official journal of the International Federation of Clinical Neurophysiology, 2016, 127(2): 1452-1459. [18] Ravikiran M, Effie C, Soon PK, et al. Prognostic and Monitory EEG-biomarkers for BCI upper-limb stroke rehabilitation[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2019, 27(8): 1654-1664. [19] Trujillo P, Mastropietro A, Scano A, et al. Quantitative EEG for predicting upper limb motor recovery in chronic stroke robot-assisted rehabilitation[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25(7): 1058-1067. [20] Michel JAM van Putten. The revised brain symmetry index. [J]. Clinical Neurophysiology, 2007, 118 (11): 2362-2367. [21] Sheorajpanday RVA, Nagels G, Weeren AJTM, et al. Reproducibility and clinical relevance of quantitative EEG parameters in cerebral ischemia: a basic approach[J]. Clinical Neurophysiology, 2009, 120(5): 845-855. [22] van Putten Michel JAM, Tavy Dénes LJ. Continuous quantitative EEG monitoring in hemispheric stroke patients using the brain symmetry index[J]. Stroke, 2004, 35(11): 2489-2492. [23] Wu Wenqing, Sun Junfeng, Jin Zheng, et al. Impaired neuronal synchrony after focal ischemic stroke in elderly patients[J]. Clinical Neurophysiology, 2011, 122(1): 21-26. [24] Kawano T, Hattori N, Uno Y, et al. Large-scale phase synchrony reflects clinical status after stroke: an EEG study[J]. Neurorehabilitation and Neural Repair, 2017, 31(6): 561-570. [25] Kawano T, Hattori N, Uno Y, et al. Electroencephalographic phase synchrony index as a biomarker of poststroke motor impairment and recovery[J]. Neurorehabilitation and Neural Repair, 2020, 34(8): 711-722. [26] Wang Fang, Zhan, Xueying, Hu Fengyun, et al. Using phase synchrony index for improved assessment of consciousness in ischemic stroke patients[J]. IEEE Access, 2019, 7: 30252-30260. [27] Wang Fang, Zhan, Xueying, Hu Fengyun, et al. Quantitative electroencephalography analysis for improved assessment of consciousness in cerebral hemorrhage and ischemic stroke patients[J]. IEEE Access, 2019, 7: 63674-63685. [28] Finnigan S, Van Putten, Michel JAM. EEG in ischaemic stroke: Quantitative EEG can uniquely inform (sub-)acute prognoses and clinical management[J]. Clinical Neurophysiology, 2013, 124(1): 10-19. [29] Livint Popa L, Dragos H, Pantelemon C, et al. The role of quantitative EEG in the diagnosis of neuropsychiatric disorders[J]. Journal of Medicine and Life, 2020, 13(1): 8-15. [30] Aminov A, Rogers JM, Johnstone SJ, et al. Acute single channel EEG predictors of cognitive function after stroke[J]. PLoS ONE, 2017, 12(10): 0185841-0185856. [31] Min Yu, Wu Yuanyuan, Yan Tiebin. Validity and reliability of the simplified Chinese version of modified Barthel index for Chinese stroke patients[J]. Chinese Journal of Physical Medicine and Rehabilitation, 2008, 30(3): 185-188. [32] Fugl-Meyer AR, Jaasko L, Leyman I, et al. The post-stroke hemiplegic patient: a method for evaluation of physical performance[J]. Scandinavian Journal of Rehabilitation Medicine, 1975, 7(1): 13-31. [33] Mizuhara H, Wang Liqun, Kobayashi K, et al. Long- range EEG phase synchronization during an arithmetic task indexes a coherent cortical network simultaneously measured by fMRI[J]. NeuroImage, 2005, 27(3): 553-563. [34] Dubovik S, Pignat JM, Ptak R, et al. The behavioral significance of coherent resting- state oscillations after stroke[J]. NeuroImage, 2012, 61(1): 249-257. [35] Guggisberg AG, Rizk S, Ptak R, et al. Two intrinsic coupling types for resting- state integration in the human brain[J]. Brain Topography, 2015, 28(2): 318-329. [36] Engel AK, Gerloff C, Hilgetag CC, et al. Intrinsic coupling modes: multiscale interactions in ongoing brain activity[J]. Neuron, 2013, 80(4): 867-886.