网站首页            期刊简介             编委会             投稿指南             期刊订阅             下载中心             在线留言            联系我们             English
  2025年4月22日 星期二  
文章快速检索
中国生物医学工程学报  2022, Vol. 41 Issue (4): 412-419    DOI: 10.3969/j.issn.0258-8021.2022.04.004
  论著 本期目录 | 过刊浏览 | 高级检索 |
基于主题模型的胶囊内镜图像序列筛查
农桂仙1,2, 潘宁1,2, 陆恒3, 胡怀飞1,2, 刘海华1,2*
1(中南民族大学生物医学工程学院,武汉 430074)
2(医学信息分析及肿瘤诊疗重点实验室,武汉 430074)
3(东部战区总医院消化内科, 南京 210002)
Screening of Wireless Capsule Endoscopy Image Sequence Based on Topic Model
Nong Guixian1,2, Pan Ning1,2, Lu Heng3, Hu Huaifei1,2, Liu Haihua1,2*
1(School of Biomedical Engineering, South-Central University for Nationalities University, Wuhan 430074, China)
2(Key Laboratory of Medical Information Analysis and Oncology Diagnosis, Wuhan 430074, China)
3(Department of Gastroenterology and Hepatology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China)
全文: PDF (7176 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 无线胶囊内窥镜(WCE)是用于记录患者消化道影像的新技术,该技术的出现给消化道疾病诊断带来了极大帮助。但在检测过程中,每位患者所产生的约5~8万幅图像中含有大量气泡和杂质等干扰图像,极大地影响了疾病诊断的效率。目前大多数方法只针对气泡筛查,且这些方法通常不稳定、普适性较差。因此,提出一种基于主题模型的WCE图像语义分析方法筛查序列中干扰性图像。首先构建非对称自编码器提取图像特征,并利用K-Means算法对训练图像块特征聚类构建视觉单词;其次将测试图像块特征映射到视觉单词中,获得测试图像的词频矩阵,实现基于视觉单词的图像语义表达;最后利用主题模型对词频矩阵进行分析,获取图像语义分类。数据集来源于南京东部战区总医院的消化道内科30例不同患者的WCE图像序列,且由临床经验丰富的医生进行注解,其中包括3 340幅气泡图像、3 330幅杂质图像和3 330幅正常图像,以1∶1的比例随机划分为训练集和测试集,进行10次交叉验证。实验结果表明,该方法能有效筛查出干扰性图像,基于深度学习的卷积自编码器优于传统的特征提取方式,获得96.87%的精度,有效地减少医生阅片负担,提高疾病诊断效率。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
农桂仙
潘宁
陆恒
胡怀飞
刘海华
关键词 语义分析pLSA卷积自编码器WCE图像筛查    
Abstract:Wireless capsule endoscopy (WCE), as a novel technology used to record images of the patient′s digestive tract, has greatly helped in the diagnosis of digestive tract diseases. However, during the detecting process, about 50,000-80,000 of images are produced for each patient, containing many disturbing images such as bubbles and impurities that greatly affect the efficiency of disease diagnosis. Most of the existing image screening methods, which are usually unstable and poorly generic, only have targeted on bubble images. Therefore, this paper proposed a topic model-based semantic analysis method to screen disturbing images from WCE sequences. The method firstly built an asymmetric autoencoder for image feature extraction, and used K-means algorithm to cluster the features of image patches in the training set to construct visual words; Secondly, the features of image patche in testing set were mapped into visual words to obtain the word frequency matrix of test images, resulting in the semantic representation of images based on visual words; Finally, the topic model was used to analyze the word frequency matrix and obtain the semantic classification of images. In this paper, the WCE dataset was obtained from 30 different patients and images in this dataset were annotated by a clinician with rich clinical experience. This dataset included 3 340 bubble images, 3 330 impurity images and 3 330 normal images, which were randomly divided into training and test sets in the ratio of 1∶1 for 10 times cross-validation. The experimental results showed that the proposed method effectively screened out the disturbing images, and the convolutional autoencoder based on the deep learning outperformed the traditional feature extraction method, obtaining 96.87% accuracy and effectively improving the efficiency of disease diagnosis.
Key wordssemantic analysis    pLSA    convolutional auto-encoder    WCE images screening
收稿日期: 2021-10-01     
PACS:  R318  
基金资助:国家自然科学基金(61773409)
通讯作者: *E-mail: lhh@mail.scuec.edu.cn   
引用本文:   
农桂仙, 潘宁, 陆恒, 胡怀飞, 刘海华. 基于主题模型的胶囊内镜图像序列筛查[J]. 中国生物医学工程学报, 2022, 41(4): 412-419.
Nong Guixian, Pan Ning, Lu Heng, Hu Huaifei, Liu Haihua. Screening of Wireless Capsule Endoscopy Image Sequence Based on Topic Model. Chinese Journal of Biomedical Engineering, 2022, 41(4): 412-419.
链接本文:  
http://cjbme.csbme.org/CN/10.3969/j.issn.0258-8021.2022.04.004     或     http://cjbme.csbme.org/CN/Y2022/V41/I4/412
版权所有 © 2015 《中国生物医学工程学报》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发