3D打印钛金属骨科植入物应用现状
甄珍1 , 王健2 , 奚廷斐3# , 刘斌1*
1.(国家药品监督管理局医疗器械技术审评中心,北京 100087) 2.(中国食品药品检定研究院医疗器械检定所,北京 102629) 3.(北京大学前沿交叉学科研究院,北京 100871)
The State of the Art in 3D Printed Ti-Based Orthopedic Implants
Zhen Zhen1 , Wang Jian2 , Xi Tingfei3# , Liu Bin1*
1.(Center for Medical Device Evaluation, National Medical Products Administration, Beijing 100081, China) 2.(Institute for Medical Devices Control, National Institute for Food and Drug Control, Beijing 102629, China); 3.(Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China)
摘要 3D打印技术近年来在骨科植入医疗器械领域发展迅速,由于其能够根据患者需求个性化地定制植入物形状,并且精确控制植入物的复杂微观结构,从而实现植入物外形和力学性能与人体自身骨的双重适配。生物医用钛及钛合金作为目前骨科植入物的主要原材料,具有优越的生物相容性,与3D打印技术结合,成为各国科学家以及医疗器械厂家研发的热点,促进3D打印钛金属骨科植入物的商业化。针对3D打印钛金属骨科植入物的特点、钛金属粉末要求、已上市产品情况、临床研究、存在的问题以及标准和审评规范等的现状与发展进行论述和展望。
关键词 :
3D打印 ,
钛金属 ,
骨科植入物 ,
标准 ,
审评规范
Abstract :3D printing technology has developed rapidly in the field of orthopedic implanted medical devices in recent years. It can customize the shape of the implant according to patient needs and precisely control the complex microstructure, thus achieving the double adaptation of the shape and mechanics between the implants and the human bone. Biomedical titanium and its alloys as the main raw materials of the orthopedic implants, have excellent biocompatibility. Recently the combination of 3D printing became the hot spot in the orthopedic implant research area. This review summarized the state of the art and trends of 3D printed Ti-based orthopedic implants.
Key words :
3D printing
titanium
orthopedic implants
standards
registration guidance
收稿日期: 2018-07-23
基金资助: 国家十三五重点研发计划(2018YFC1106700)
通讯作者:
liubin@cmde.org.cn
作者简介 : #中国生物医学工程学会会员(Member, Chinese Society of Biomedical Engineering)
引用本文:
甄珍, 王健, 奚廷斐, 刘斌. 3D打印钛金属骨科植入物应用现状[J]. 中国生物医学工程学报, 2019, 38(2): 240-251.
Zhen Zhen, Wang Jian, Xi Tingfei, Liu Bin. The State of the Art in 3D Printed Ti-Based Orthopedic Implants. Chinese Journal of Biomedical Engineering, 2019, 38(2): 240-251.
链接本文:
http://cjbme.csbme.org/CN/10.3969/j.issn.0258-8021.2019.02.014 或 http://cjbme.csbme.org/CN/Y2019/V38/I2/240
[1] Zhang XiangYu, Fang Gang, Zhou Jie. Additively manufactured scaffolds for bone tissue engineering and the prediction of their mechanical behavior: A review [J]. Materials (Basel), 2017, 10(1):E50. [2] Ngo TD, Kashani A, Imbalzano G, et al. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges [J]. Composites Part B: Engineering, 2018, 143:172-196. [3] Wang Xiaohong, Ao Qiang, Tian Xiaohong, et al. 3D bioprinting technologies for hard tissue and organ engineering [J]. Materials (Basel), 2016, 9(10):E802. [4] Sikavitsas VI, Temenoff JS, Mikos AG. Biomaterials and bone mechanotransduction [J]. Biomaterials, 2001, 22(19):2581-2593. [5] Cai Hong. Application of 3D printing in orthopedics. status quo and opportunities in China [J]. Ann Transl Med, 2015, 3(Suppl 1):S12. [6] Thomsen JS, Laib A, Koller B, et al. Stereological measures of trabecular bone structure: comparison of 3D micro computed tomography with 2D histological sections in human proximal tibial bone biopsies [J]. J Microsc, 2005, 218(Pt 2):171-179. [7] MacBarb RF, Lindsey DP, Bahney CS, et al. Fortifying the Bone-Implant Interface Part 1: An in vitro evaluation of 3d-printed and TPS porous surfaces [J]. International Journal of Spine Surgery, 2017, 11(3):15. [8] El-Hajje A, Kolos EC, Wang JK, et al. Physical and mechanical characterisation of 3D-printed porous titanium for biomedical applications [J]. Journal of Materials Science: Materials in Medicine, 2014, 25(11):2471-2480. [9] Sidambe AT. Biocompatibility of advanced manufactured titanium implants-a review [J]. Materials (Basel), 2014, 7(12):8168-8188. [10] Marin E, Fusi S, Pressacco M, et al. Characterization of cellular solids in Ti6Al4V for orthopaedic implant applications: Trabecular titanium [J]. J Mech Behav Biomed Mater, 2010, 3(5):373-381. [11] Perticarini L, Zanon G, Rossi SM, et al. Clinical and radiographic outcomes of a trabecular titanium acetabular component in hip arthroplasty: Results at minimum 5 years follow-up [J]. BMC Musculoskelet Disord, 2015, 16:375. [12] Olson PD. 100,000 patients later, the 3d-printed hip is a decade old and going strong [EB/OL]. http://additivemanufacturing.com/ 2018/03/12/100000-patients-later-the-3d-printed-hip-is-a-decade-old-and-going-strong/, 2018-03-12/2018-07-23 [13] Bertollo N, Da Assuncao R, Hancock NJ, et al. Influence of electron beam melting manufactured implants on ingrowth and shear strength in an ovine model [J]. J Arthroplasty, 2012, 27(8):1429-1436. [14] 爱康医疗. 爱康3D ACT钛合金骨小梁髋臼杯[EB/OL]. http://www.ak-medical.net/simple/product/details_44_202.html, 2015-07-22/2018-07-23. [15] Stryker. Triathlon tritanxium cementless total knee system [EB/OL]. https://www.stryker.com/us/en/joint-replacement/products/triathlon-tritanium.html, 2017-11-01/2018-07-23. [16] SI-BONE, Inc. Announces FDA clearance and full U.S. commercial launch of the iFuse-3DTM implant, a patented, 3d-printed next generation member of the iFuse implant system©[EB/OL]. https://investor.si-bone.com/news-releases/news-release-details/si-bone-inc-announces-fda-clearance-and-full-us-commercial, 2017-06-13/2018-07-23. [17] Julius D, Djaya K, Robert P, et al. 1-Year Results of a randomized controlled trial of conservative management vs. minimally invasive surgical treatment for sacroiliac joint pain [J]. Pain Physician 2017, 20:537-550. [18] BioArchitects. Completely cunstomized titanium implants [EB/OL]. https://www.bioarchitects.com/prostheses, 2016-02-04/2018-07-23. [19] DePuy Synthes. TRUMATCH© CMF Patient Specific Implants [EB/OL]. https://www.depuysynthes.com/hcp/cmf/products/qs/Patient_Specific_Implants, 2018/2018-07-23. [20] Renovis. Tesera lumbar interbody fusion PLIF system [EB/OL]. http://www.renovis-surgical.com/2017/03/tesera-posterior-lumbar-interbody-fusion-plif-system/, 2017-03-01/2018-07-23 [21] Galati M, Iuliano L. A literature review of powder-based electron beam melting focusing on numerical simulations [J]. Additive Manufacturing, 2018, 19:1-20. [22] Li Xiang, Feng Yafei, Wang ChengTao, et al. Evaluation of biological properties of electron beam melted Ti6Al4V implant with biomimetic coating in vitro and in vivo [J]. PLoS ONE, 2012, 7(12):e52049. [23] Murr LE, Quinones SA, Gaytan SM, et al. Microstructure and mechanical behavior of Ti-6Al-4V produced by rapid-layer manufacturing, for biomedical applications [J]. J Mech Behav Biomed Mater, 2009, 2(1):20-32. [24] Wang Hong, Zhao Bingjing, Liu Changkui, et al. A comparison of biocompatibility of a titanium alloy fabricated by electron beam melting and selective laser melting [J]. PLoS ONE, 2016, 11(7):e0158513. [25] 周梦, 成艳, 周晓晨, 等. 基于增材制造技术的钛合金医用植入物 [J]. 中国科学:技术科学, 2016, 46(11):1097-1115. [26] 邹海平, 李上奎, 李博, 等. 3D 打印用金属粉末的制备技术发展现状 [J]. 中国金属通报, 2016(8):88-89. [27] 高朝峰, 余伟泳, 朱权利, 等. 3D打印用金属粉末的性能特征及研究进展 [J]. 粉末冶金工业, 2017, 27(5):53-58. [28] 汤慧萍, 王建. 金属3D打印中的材料问题及对策 [C]// 2015年全国粉末冶金学术会议暨海峡两岸粉末冶金技术研讨会论文集. 武汉, 2015:68-72. [29] GB/T 3500—2008 粉末冶金 术语 [S].北京:中国标准出版社,2008. [30] 韩寿波, 张译文, 田象军, 等. 航空航天用高品质3D打印金属粉末的研究与应用 [J]. 粉末冶金工业, 2017, 27(6):44-51. [31] Gu Hengfeng, Gong Haijun, Dilip JJS, et al. Effects of powder variation on themicrostructure and tensile strength of Ti6Al4V parts fabricated by selective laser melting. [C]// Proceedings of the 25th Annual International Solid Freeform Fabrication Symposium. Austin,2014:471-483 [32] 梁永仁, 吴引江. 3D打印用钛及钛合金球形粉末制备技术 [J]. 世界有色金属, 2016(6):150-151. [33] 赵敏超, 黄燕, 袁伟健, 等. 3D打印金属内植物在骨科的应用特点 [J]. 中国组织工程研究, 22(31):5027-5033. [34] Wei Ran, Guo Wei, Ji Tao, et al. One-step reconstruction with a 3D-printed, custom-made prosthesis after total en bloc sacrectomy: a technical note [J]. Eur Spine J, 2017, 26(7):1902-1909. [35] 汪铁铮. 北大人民医院完成世界首例3D打印全骶骨假体治疗骶骨恶性肿瘤术 [J]. 首都食品与医药, 2015, 22(19):64-64. [36] Liang Haijie, Ji Tao, Zhang Yidan, et al. Reconstruction with 3D-printed pelvic endoprostheses after resection of a pelvic tumour [J]. The Bone & Joint Journal, 2017, 99(B):267-275. [37] 郭卫, 王毅飞, 张熠丹, 等. 3D打印组配式骨盆假体重建骨盆肿瘤切除后骨缺损 [J]. 中华骨科杂志, 2016, 36(20):1302-1311. [38] Kim DY, Lim JY, Shim KW, et al. Sacral reconstruction with a 3d-printed implant after hemisacrectomy in a patient with sacral osteosarcoma: 1-Year follow-up result [J]. Yonsei Medical Journal, 2017, 58(2):453-457. [39] 苏暄, 刘忠军. 3D打印技术带来脊柱外科个体化治疗时代 [J]. 中国医药科学, 2015, 5(24):1-4. [40] Choy WJ,.Mobbs RJ, Wilcox B, et al. Reconstruction of thoracic spine using a personalized 3D-printed vertebral body in adolescent with T9 primary bone tumor [J]. World Neurosurgery, 2017, 105:1032.e1013-1032.e1017. [41] Phan K, Sgro A, Maharaj MM, et al. Application of a 3D custom printed patient specific spinal implant for C1/2 arthrodesis [J]. Journal of Spine Surgery, 2016, 2(4):314-318. [42] 樊笑,王佳友,鲍树森,等. 3D打印技术在骨肿瘤科中的应用 [J]. 医学信息, 2018, 21(6):1-3. [43] Luo Wenbin, Huang Lanfeng, Liu He, et al. Customized knee prosthesis in treatment of giant cell tumors of the proximal tibia: application of 3-dimensional printing technology in surgical design [J]. Medical Science Monitor, 2017, 23:1691-1700. [44] Li Huiwu, Qu Xinhua, Mao Yuanqing, et al. Custom acetabular cages offer stable fixation and improved hip scores for revision THA with severe bone defects [J]. Clinical Orthopaedics and Related Research, 2016, 474(3):731-740. [45] 李慧武, 朱振安, 毛远清, 等. 快速成型技术在严重髋臼骨缺损翻修术中的应用 [J]. 中华关节外科杂志(电子版), 2015, 9(6):725-731. [46] Berasi CC, Berend KR, Adams JB, et al. Are custom triflange acetabular components effective for reconstruction of catastrophic bone loss? [J]. Clinical Orthopaedics and Related Research, 2015, 473(2):528-535. [47] Daniel VC. Stoffelen KE, Philippe D. The use of 3D printing technology in reconstruction of a severe glenoid defect: a case report with 2.5 years of follow-up [J]. Journal of Shoulder and Elbow surgery, 2015, 24:e218-e222. [48] Qing Han YQ, Yun Zou, Chenyu Wang, et al. Novel exploration of 3D printed wrist arthroplasty to solve the severe and complicated bone defect of wrist [J]. Rapid Protoyping Journal, 2016, 23(3):465-473. [49] Zhou Xin, Wang Daizhen, Liu Xihe, et al. 3D-imaging of selective laser melting defects in a Co-Cr-Mo alloy by synchrotron radiation micro-CT [J]. Acta Materialia, 2015, 98:1-16. [50] Zhang Sheng, Wei Qingsong, Cheng Lingyu, et al. Effects of scan line spacing on pore characteristics and mechanical properties of porous Ti6Al4V implants fabricated by selective laser melting [J]. Materials & Design, 2014, 63:185-193. [51] Murr LE, Gaytan SM, Ramirez DA, et al. Metal fabrication by additive manufacturing using laser and electron beam melting technologies [J]. Journal of Materials Science and Technology, 2012, 28(1):1-14. [52] 魏崇斌, 马骏, 王彩梅, 等. 电子束熔融法制备的医用Ti6Al4V 在人工模拟体液中的耐腐蚀行为 [J]. 生物骨科材料与临床研究, 2017, 14(4):6-14. [53] Vojislav P, Juan VHG, Olga JF, et al. Additive layered manufacturing: sectors of industrial application shown through case studies [J]. International Journal of Production Research, 2011, 49(4):1061-1079. [54] Oropallo W, Piegl LA. Ten challenges in 3D printing [J]. Engineering with Computers, 2015, 32(1):135-148. [55] Formanoir C, Michotte S, Rigob O, et al. Electron beammelted Ti-6Al-4V: Microstructure, textureand mechanical behavior of the as-built and heat-treated material [J]. Materials Science and Engineering: A, 2016, 652:105-119. [56] Gong Haijun, Rafi Khalid, Gu Hengfeng, et al. Influence of defects on mechanical properties of Ti-6Al-4V components produced by selective laser melting and electron beam melting [J]. Materials & Design, 2015, 86:545-554. [57] Liu Heng. Numerical analysis of thermal stress and deformation in multi-layer laser metal deposition process [D]. Rolla: Missouri University of Science and Technology, 2014. [58] Tang HP, Qian M, Liu N, Zhang XZ, et al. Effect of powder reuse times on additive manufacturing of Ti-6Al-4V by selective electron beam melting [J]. The Journal of the Minerals, Metals & Materials Society (TMS), 2015, 67(3):555-563. [59] Wei Chongbin, Ma Xiaolin, Yang Xiaojie, et al. Microstructural and property evolution of Ti6Al4V powders with the number of usage in additive manufacturing by electron beam melting [J]. Materials Letters, 2018, 221:111-114. [60] 郭晓磊, 卢忠, 刘斌. 个体化解剖匹配骨植入假体的上市前临床评价及上市后研究要求 [J]. 生物骨科材料与临床研究, 2018, 15(4):77-80. [61] 王安琪, 柯林楠, 黄元礼, 等. 3D 打印医疗器械标准现状和产品质量控制研究 [J]. 中国医疗器械信息,2017, 23(3):25-29.
[1]
张一帆, 徐铭恩, 王玲, 张翮. 利用同轴3D打印技术构建促内皮细胞生长类血管组织工程支架 [J]. 中国生物医学工程学报, 2020, 39(2): 206-214.
[2]
刘妍, 杨清振, 陈小明, 谷方伟, 张辉. 3D打印技术制备器官芯片的研究现状 [J]. 中国生物医学工程学报, 2020, 39(1): 97-108.
[3]
李相成, 索海瑞, 王玲, 徐铭恩. 基于3D打印羟基磷灰石支架的填充结构与力学性能研究 [J]. 中国生物医学工程学报, 2020, 39(1): 91-96.
[4]
李继鹏, 李颖, 张东颖, 冯浩, 尹宁. 基于脑电信号溯源分析的音乐类型对学习记忆影响的研究 [J]. 中国生物医学工程学报, 2019, 38(6): 679-686.
[5]
许克惠, 李娇娇, 李香玉, 陈佳龙. 光固化3D打印软组织材料的性能研究进展 [J]. 中国生物医学工程学报, 2019, 38(5): 628-635.
[6]
余 镇, 吴凌云, 倪 东, 陈思平, 李胜利, 汪天富, 雷柏英. 基于深度学习的胎儿颜面部超声标准切面自动识别 [J]. 中国生物医学工程学报, 2017, 36(3): 267-275.
[7]
刘 翀, 徐铭恩, 王 玲, 宋江新. 基于3D打印细胞培养支架内部血管通道的模拟与构建 [J]. 中国生物医学工程学报, 2017, 36(1): 67-74.
[8]
赵占盈 徐铭恩* 石然 郭淼 严明 徐莹 王玲. 基于细胞3D打印技术的肿瘤药物筛选细胞芯片研究 [J]. 中国生物医学工程学报, 2014, 33(2): 161-169.
[9]
冀倩倩包家立1* 李宇波2 朱朝阳1 . 磁共振成像的电磁安全与限值标准 [J]. 中国生物医学工程学报, 2012, 31(1): 141-146.