交联对氧化纤维素/蚕丝蛋白复合膜结构和性能的影响
1 温州医科大学检验医学院 生命科学学院,浙江 温州 325035
2 北京大学深圳研究院人体组织再生与修复深圳重点实验室,广东 深圳 518057
The Effect of Crosslink on the Structures and Performance of Oxidized Bacterial Cellulose/Silk Fibroin Composite Films
1 School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou 325035,Zhejiang, China
2 Shenzhen Key Laboratory of Human Tissue Regeneration and Repair, Shenzhen Institute of Peking University, Shenzhen 518057,Guangdong, China
摘要 本研究的目的是探讨交联剂对纳米细菌纤维素/蚕丝蛋白复合物的理化性能的影响。一种方法是将细菌纤维素膜和氧化的细菌纤维素膜分别与蚕丝蛋白溶液直接混合;另一种方法是两者混合时加入交联剂。对复合膜进行傅里叶变换红外光谱(FTIR)、核磁共振光谱(NMR)、X射线光电子能谱(XPS)、场发射扫描电镜(FESEM)和力学强度测试分析。FTIR、NMR等结果表明蚕丝蛋白能结合在氧化的细菌纤维素膜上,XPS表明无论是否加交联剂,C1s、O1s和N1s能谱峰没有显著不同。BC/SF复合膜,未加交联剂的C/N摩尔比与加交联剂的C/N摩尔比相比较,从963减到394,而TBC/SF的C/N比从503增到741。FESEM表明加入交联剂组的膜表面比较平整,结构有明显改变,力学强度测试表明未加交联剂TBC/SF和加交联剂TBC/SF的断裂伸长率比较,有显著性差异(P<001)。通过添加交联剂所制得的复合膜的性能更好,并且在医用材料方面尤其在细胞化的血管支架方面的应用有一定的前景。
关键词 :
细菌纤维素 ,
氧化 ,
蚕丝蛋白 ,
复合
Abstract :The purpose of this study is to investigate two kinds of preparation methods on nanobacterial cellulose/silk fibroin composites and to compare the physical and chemical properties of the resulting composite products. One method is to mix directly bacterial cellulose or oxidized bacterial cellulose membranes with silk fibroin solution. Another one is to add crosslinking agents during the mixing process. The composite products were characterized using Fourier transforminfrared (FTIR) spectroscopy,13C NMR spectrum, Xray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM) and mechanical testing. Results show that fibroin can successfully be combined on the oxidized bacterial cellulose membrane, XPS results show that no matter adding crosslinking agents or not, C1s, O1s and N1s appeared no difference. BC/SF composite membrane, the comparison C/N molar ratio of without crosslinking agents and with them, reduced from 963 to 394, while the TBC/SF, C/N ratio increased from 503 to 741. The membrane surface of one group containing crosslinking agents is smoother than another, and the structure has obvious changes. There are significant differences in elongation at break of TBC/SF (P<001). Based on this work, the performance of composite films prepared by adding crosslinking agents is better, and the materials described here demonstrate the potential in medical material applications, especially in a cellular vascular graft filed.
Key words :
bacterial cellulose
oxidation
silk fibroin
composite
基金资助: 国家科技支撑计划(2012BAI18B06)
[1]Torres FG, Commeaux S, Troncoso OP, et al. Biocompatibility of bacterial cellulose based biomaterials [J]. Biomaterials, 2012, 3(4): 864-878.
[2]Petersen N, Gatenholm P. Bacterial cellulosebased materials and medical devices: current state and perspectives. Appl Microbiol Biotechnol, 2011, 91(5): 1277-1286.
[3]Fitz-Binder C, Bechtold T. Onesided surface modification of cellulose fabric by printing a modified TEMPOmediated oxidant [J]. Carbohydr Polym, 2014, 106: 142-147.
[4]Retegi A, Algar I, Martin L, et al. Sustainable optically transparent composites based on epoxidized soybean oil (ESO) matrix and high contents of bacterial cellulose (BC) [J]. Cellulose, 2012, 19: 103-109.
[5]Wiegand C, Elsner P, Hiple UC. Protease and ROS activities influenced by a composite of bacterial cellulose and collagen type I in vitro [J]. Cellulose, 2006, 13 (6): 689-696.
[6]Ciechanska D. Multifunctional bacterial cellulose/chitosan composite materials for medical applications [J]. Fibres and Textiles, 2004, 12(4): 69-72
[7]DieterA, Schumann JW, Dieter O, et al. Artificial vascular implants from bacterial cellulose: preliminary results of small arterial substitutes[J]. Cellulose, 2009, 16:877-885.[8]Malm CJ, Risberg B, Bodin A, et al. Small calitre biosynthetic cellulose blood vessels:13months patercy in a sheep model [J]. Scandonavian Cardiovascular Journal, 2012,46(1): 57-62.
[9]Hutchens SA, Benson RS, Evans BR, et al. Biomimetic synthesis of calciumdeficient hydroxyapatite in a natural hydrogel [J]. Biomaterials, 2006, 27(26): 4 661-4670.
[10]Bodin A,Bharadwaj S, Wu S, et al. Tissue engineered conduit using urinederived stem cells seeded bacterial cellulose polymer in urinary reconstruction and diversion [J]. Biomaterials,2010, 31(34): 8889-8901.
[11]Svensson A, Nicklasson E, Harrah T, et al. Cellulose as a potential scaffold for tissue engineering of cartilage [J]. Biomaterials, 2005, 26: 419-431.
[12]Saito T, Isogai A. TEMPOmediated oxidation of native cellulose: The effect of oxidation conditions on chemical and crystal structures of the waterinsoluble fractions [J]. Biomacromolecules, 2004, 5: 1983-1989.
[13]Saito T, Shibata I, Isogai A, et al. Distribution of carboxylate groups introduced into cotton linters by the TEMPOmediated oxidation [J]. Biomacromolecules, 2005, 61: 414-419.
[14]Saito T, Okita Y, Nge TT, et al. EMPOmediated oxidation of native cellulose: Microscopic analysis of fibrous fractions in the oxidized products [J]. Carbohydrate Polymers, 2006, 65(4): 435-440.
[15]Kowalska-Ludwicka K, Cala J, Grobelski B, et al. Modified bacterial cellulose tubes for regeneration of damaged peripheral nerves [J]. Arch Med Sci, 2013, 9(3): 527-534.
[16]Inouye K, Kurokawa M, Nishikawa S, et al. Use of Bombyx mori silk fibroin as a substratum for cultivation of animal cells [J]. J Biochem Biophys Meth, 1998, 37(3): 159-164.
[17]Irene C, Marina F, Nadia A, et al. In vivo regeneration of elastic lamina on fibroin biodegradable vascular scaffold [J]. Int J Artif Organs, 2013, 36(3): 166-174.
[18]Yang Xiaoyuan, Wang Lu, Guan Guoping, et al. Preparation and evaluation of biocomponent and homogeneous polyester silk small diameter arterial prostheses [J]. Journal of Biomaterials Applications, 2012, 27(7): 1-12.
[19]Losi P, Lombardi S, Briganti E, et al. Luminal surface microgeometry affects platelet adhesion in smalldiameter synthetic grafts [J]. Biomaterials, 2004, 25(18): 4447-4455.
[20]Robinson WP, Owens CD, Nguyen LL, et al. Inferior outcomes of autogenous infrainguinal bypass in Hispanics: An analysis of ethnicity, graft function, and limb salvage [J]. J Vasc Surg, 2009, 49 (6): 1416-1425.
[21]Madhavan K, Belchenko D, Motta A, et al. Evaluation of composition and crosslinking effects on collagenbased composite constructs [J]. Acta Biomater, 2010, 6 (4) : 1413-1422.
[22]Liimatainen H, Visanko M, Sirvi JA, et al. Enhancement of the nanofibrillation of wood cellulose through sequential periodatechlorite oxidation [J]. Biomacromolecules, 2012, 13: 1592-1597.
[23]Freddi G, Romano M, Rosaria MJ. Silk fibroin/cellulose blend films: Preparation, structure, and physical properties [J]. Appl Polym Sci, 1995, 56(12): 1537-1545.
[24]Shang Songmin, Zhu Lei, Fan Jintu. Physical properties of silk fibroin/cellulose blend films regenerated from the hydrophilic ionic liquid [J]. Carbohydr Polym, 2011, 86(2): 462-468.
[25]Jung R, Jin HJ. preparation of silk fibroin/bacterial cellulose composite films and their mechanical properties [J]. Key Engineering Materials, 2007, 342-343: 741-744.
[26]Klemm D, Philpp B, Heinze T, et al. Comprehensive Cellulose Chemistry: Fundamentals and Analytical Methods, Volume 1 [M]. Weinheim: WileyVCH, 1998.
[27]Vitor RJ, Newman RH, Ha MA, et al. Conformational features of crystalsurface cellulose from higher plants [J]. Plant J, 2002, 30(6): 721-731.
[28]Asakura T, Kuzuhara A, Tabeta R, et al. Conformational characterization of Bombyx mori silk fibroin in the solid state by highfrequency carbon13 cross polarizationmagic angle spinning NMR, xray diffraction, and infrared spectroscopy [J]. Macromolecules, 1985, 18(10): 1841-1845.
[29]Wang M, Yuan J, Huang XB, et al. Grafting of carboxybetaine brush onto cellulose membranes via surfaceinitiated ARGETATRP for improving blood compatibility [J]. Colloids and Surfaces B: Biointerfaces, 2013, 103: 52-58.
[30]Lin H, Yao LR, Chen YY, et al. Structure and properties of silk fibroin modified cotton [J]. Fiber Polym, 2008, 9(2): 113-120.
[31]Lai Chen, Sheng Liyuan, Liao Shibo, et al. Surface characterization of TEMPOoxidized bacterial cellulose [J]. Interface Anal, 2013, 45: 1673-1679.
[32]Brown EE, Zhang Jinwen, Laborie MG. Neverdried bacterial cellulose/fibrin composites: preparation, morphology and mechanical properties [J]. Cellulose, 2011, 18: 631-641.
[1]
校搏1 郝绥绥2 吴凤新2 孟洁2 张宇2 刘健<. 磁响应性三元复合材料制备及引导骨缺损修复的研究 [J]. 中国生物医学工程学报, 2015, 34(3): 330-336.
[2]
袁翰1 郑欣2 邱旭升2 陈一心2* . 蚕丝蛋白/PCL共混取向纤维的力学性质与细胞响应 [J]. 中国生物医学工程学报, 2015, 34(3): 337-344.
[3]
廖世波1,2 黄淑玉2 赖琛1 奚廷斐1 C6位氧化型细菌纤维素/壳聚糖复合材料的制备及表征 [J]. 中国生物医学工程学报, 2014, 33(5): 600-608.
[4]
杨波* 刘宝林 李娟 沈力. 肝细胞复合体的低温保存实验研究 [J]. 中国生物医学工程学报, 2014, 33(4): 503-507.
[5]
马腾1 陈爱政1 王士斌1,2* . 超临界二氧化碳流体发泡技术制备组织工程支架及其泡孔形貌控制研究进展 [J]. 中国生物医学工程学报, 2014, 33(4): 467-474.
[6]
廖世波1 奚廷斐1,2,4* 赖琛2* 廖世玉3 黄涛4 王甩艳4 . TEMPO-NaBr-NaClO 体系对细菌纤维素的氧化过程研究 [J]. 中国生物医学工程学报, 2013, 32(6): 699-707.
[7]
王丽婷1,2 周钢1 樊瑜波1* . 纳米羟基磷灰石/壳聚糖( n-HA/CS) 复合材料对SD 大鼠代谢器官的影响 [J]. 中国生物医学工程学报, 2013, 32(5): 595-600.