Research Progress in Experimental Paradigm of Auditory Based BrainComputer Interface
The ProvinceMinistry Joint Key Laboratory of Electromagnetics and Electrical Apparatus Reliability, Hebei University of Technology, Tianjin 300130, China
Abstract:Brain-computer interface (BCI) based on visual paradigm has been highly effective and widely used. However, many patients suffering from complicated lockedin state have compromised vision, which makes them unable to use a visualbased BCI. Auditory BCI provides a potential novel communication way for them, which requires investigations. This paper reviewed the development status about auditory-based BCI. Four experimental paradigms of auditory-based BCI such as P300, auditory steady-state response, selective attention, spatial orientation were summarized in this article, along with a brief comparison to each other. Furthermore, existing problems of auditory BCI in application were proposed and future research directions were discussed as well.
[1]高上凯. 浅谈脑机接口的发展现状与挑战. 中国生物医学工程学报 [J]. 2007, 26(6): 801-803.
[2]Wolpaw JR, Birbaumer N, McFarland, et al. Brain computer interface for communication and control [J]. Clin Neurophysiol, 2002, 113: 761-791.
[3]尧德中, 刘铁军, 雷旭等. 基于脑电的脑机接口: 关键技术和应用前景 [J]. 电子科技大学学报,2009,38(5):550-554.
[4]李洁. 多模态脑电信号分析及脑机接口应用 [D]. 上海: 上海交通大学, 2009.
[5]明东. 用于脑机接口的感觉刺激事件相关电位研究进展 [J]. 电子测量与仪器学报, 2009, 23(6):1-5.
[6]Wang Lei, Xu Guizhi, Wang Jiang, Yang Shuo, Yan Weili. Feature extraction of mental task in BCI based on the method of approximate entropy [C] //Proceedings of the 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Lyon: IEEE, 2007: 1941-1944.
[7]Pfurtscheller G. Eventrelated synchronization (ERS): an electrophysiological correlate of cortical areas at rest [J]. Electroencephalogram Clinical Neurophysiology, 1992, 83(1): 62-69.
[8]Birbaumer N, Kubler A, Ghanayim N, et al. The thought translation device (TTD) for completely paralyzed patients [J]. IEEE Transactions on Rehabilitation Engineering, 2000, 8(2):190-193.
[9]Manyakov NV, Chumerin N, Hulle MM.Multichannel decoding for phasecoded ssvep braincomputer interface [J]. International Journal of Neural Systems, 2012, 12(5):1250022.
[10]Middendorf M, McMillan G, Calhoun G, et al. BrainComputer interface based on steadystate visual evoked response [J]. IEEE Transactions on Rehabilitation Engineering, 2000, 8(2):211-214.
[11]Townsend G, Lapallo BK., Boulay CB, et al. A novel P300-based braincomputer interface stimulus presentation paradigm: Moving beyond rows and columns [J]. Clinical Neurophysiology, 2010, 121(7): 1109-1120.
[12]Hinterberger T, Neumann N, Pham M, et al. A multimodal brainbased feedback and communication system [J]. Experimental Brain Research, 2004, 154 (4): 521-526.
[13]Pham M, Hinterberger T, Neumann N, et al. An auditory braincomputer interface based on the selfregulation of slow cortical potentials [J]. Neurorehabilitation & Neural Repair, 2005, 19(3):206-218.
[14]Nijboer F, Furdea A, Gunst I, et al. An auditory braincomputer interface (BCI) [J]. Journal of Neuroscience Methods, 2008, 167(1):43-50.
[15]Sellers EW, Donchin E. A P300based braincomputer interface: Initial tests by ALS patients [J]. Clinical Neurophysiology, 2006,117 (3):538-548.
[16]Furdea A, Halder S, Krusienski DJ, et al. An auditory oddball (P300) spelling system for braincomputer interfaces [J]. Psychophysiology. 2009, 46(3):617-625.
[17]Klobassa DS, Vaughan TM, Brunner P, et al. Toward a highthroughput auditory P300based braincomputer interface [J]. Clinical Neurophysiology, 2009, 120 (7): 1252-1261.
[18]Kthner I, Ruf CA., Pasqualotto E, et al. A portable auditory P300 braincomputer interface with directional cues [J]. Clinical Neurophysiology, 2012, 124(2):327-338.
[19]Galambos R, Makeig S, Talmachoff PJ. A 40Hz auditory potential recorded from the human scalp [J]. Proceedings of the National Academy of Sciences of the United States of America, 1981, 78(4): 2643-2647.
[20]Kim DW, Hwang HJ, Lim JH, et al. Classification of selective attention to auditory stimuli: Toward visionfree braincomputer interfacing [J]. Journal of Neuroscience Methods, 2011, 197 (1):180-185.
[21]Kanoh S, Miyamoto K , Yoshinobu T. A braincomputer interface (BCI) system based on auditory stream segregation [C] // The 30th Annual International IEEE EMBS Conference. Vancouver: IEEE, 2008:642-645.
[22]Halder S, Rea M, Andreoni R, et al. An auditory oddball braincomputer interface for binary choices [J]. Clinical Neurophysiology, 2010, 121 (4):516-523.
[23]Hill NJ, Lal TN, Bierig K,et al. An Auditory paradigm for brain computer interfaces [J]. Advances in Neural Information Processing Systems, 2005, 17:569-576.
[24]Hill NJ, Schlkopf B. An online braincomputer interface based on shifting attention to concurrent streams of auditory stimuli [J]. Journal of Neural Engineering, 2012, 9(2): 026011
[25]郭苗苗,徐桂芝,王磊,等.基于小波变换的听觉脑机接口技术研究.中国生物医学工程学报,2011,30(5): 661-665
[26]LopezGordo MA, Fernandez E, Romero S, et al. An auditory braincomputer interface evoked by natural speech [J]. Journal of Neural Engineering, 2012, 9(3): 036013[27]Guo Jing, Gao Shangkai, and Hong Bo. An auditory braincomputer interface using active mental response [J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2010, 18(3):230-235
[28]Xu Honglai, Zhang Dan, Ouyang Minhui, et al. Employing an active mental task to enhance the performance of auditory attentionbased braincomputer interfaces [J]. Clinical Neurophysiology, 2012, 124(1): 83-90.
[29]Schreuder M, Blankertz B, Tangermann M. A new auditory multiclass braincomputer interface paradigm: spatial hearing as an informative cue [J]. PLoS ONE, 2010, 5(4): e9813.
[30]Hhne J, Schreuder M, Blankertz B, et al. Twodimensional auditory P300 Speller with predictive text system [C] //Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Buenos Aires: IEEE, 2010: 4185-4188.