Research Progress of Chitosanbased Nanomaterials in Bone Tissue Engineering and Regenerative Medicine
1 Department of Prosthetic Dentistry, College of Medicine, Second Affiliated Hospital, Zhejiang University, Hangzhou 310009, China
2 Department of Oral Surgery, First People’s Hospital of Hangzhou, Hangzhou 310006, China
3 ZhejiangCalifornia International Nanosystems Institute, Zhejiang University, Hangzhou 310029, China
Abstract:Chitosan is the only one natural cationic polysaccharide possessing similar chemical structures to extracellular glycosaminoglycan. Chitosan has excellent biocompatibility, biodegradability as well as biological activity. In the past decade, chitosanbased nanomaterials have been widely studied in bone tissue engineering. The present paper reviews the researches and application potentials of chitosan nanocomposites, chitosan nanofibers and chitosan nanoparticles in biomedical fields. Investigation results show that chitosan nanocomposites, chitosan nanofibrous scaffolds and chitosan nanoparticles loading biological active factors and exogenous genes have wide promising potentials for bone tissue engineering and regenerative medicine.
李晓静1 王新木2 董研1*苟中入3. 基于壳聚糖的纳米材料在骨组织工程与再生医学中的研究进展[J]. 中国生物医学工程学报, 2013, 32(5): 620-625.
LI Xiao Jing1 WANG Xin Mu2 DONG Yan1*GOU Zhong Ru3. Research Progress of Chitosanbased Nanomaterials in Bone Tissue Engineering and Regenerative Medicine. journal1, 2013, 32(5): 620-625.
[1]Kessler MW, Grande DA. Tissue engineering and cartilage [J]. Organogenesis, 2008, 4(1): 28-32.
[2]Venkatesan J, Kim SK. Chitosan composites for bone tissue engineering—an overview [J]. Mar Drugs, 2010, 8(8): 2252-2266.
[3]Giannoudis PV, Dinopoulos H, Tsiridis E. Bone substitutes: an update [J]. Injury, 2005, 36 (Suppl 3): S20-S27.
[4]Swetha M, Sahithi K, Moorthi A, et al. Biocomposites containing natural polymers and hydroxyapatite for bone tissue engineering [J]. Int J Biol Macromol, 2010, 47(1): 1-4.[5]Francesko A, Tzanov T. Chitin, chitosan and derivatives for wound healing and tissue engineering [J]. Adv Biochem Engin Biotechnol, 2010, 125: 1-27.
[6]Park BK, Kim MM. Applications of chitin and its derivatives in biological medicine [J]. Int J Mol Sci, 2010, 11(12): 5152-5164.
[7]Yu Ting, Li Honghe, Zheng Xiaodong. Synergistic effect of chitosan and cryptococcus laurentii on inhibition of Penicillium expansum infections [J]. Int J Food Microbiol, 2007, 114(3): 261-266.
[8]Valentine R, Athanasiadis T, Moratti S, et al. The efficacy of a novel chitosan gel on hemostasis and wound healing after endoscopic sinus surgery [J]. Am J Rhinol Allergy, 2010, 24(1): 70-75.
[9]Kawai T, Yamada T, Yasukawa A, et al. Biological fixation of fibrous materials to bone using chitin/chitosan as a bone formation accelerator [J]. J Biomed Mater Res B Appl Biomater, 2009, 88(1): 264-270.
[10]Teng SH, Lee EJ, Wang P, et al. Threelayered membranes of collagen/hydroxyapatite and chitosan for guided bone regeneration [J]. J Biomed Mater Res B Appl Biomater, 2008, 87(1): 132-138.
[11]Lee EJ, Shin DS, Kim HE, et al. Membrane of hybrid chitosan–silica xerogel for guided bone regeneration [J]. Biomaterials, 2009,30(5): 743-750.
[12]Kim K, Fisher JP. Nanoparticle technology in bone tissue engineering [J]. J Drug TargeT, 2007, 15(4): 241-252.
[13]Kubinová , Syková E. Nanotechnologies in regenerative medicine [J]. Minim Invasive Ther Allied Technol, 2010, 19(3): 144-156.
[14]孙康,王丽平. 壳聚糖静电纺纳米纤维的制备和特点[J]. 应用化学, 2011, 28(2): 123-130.
[15]Zeng Rong, Tu Mei, Liu hongwei, et al. Preparation, structure, drug release and bioinspired mineralization of chitosanbased nanocomplexes for bone tissue engineering [J]. Carbohydr Polym, 2009, 78(1): 107-111.
[16]Zhao Jianhao, Han Wanqing, Chen Haodong, et al. Fabrication and in vivo osteogenesis of biomimetic poly(propylene carbonate) scaffold with nanofibrous chitosan network in macropores for bone tissue engineering [J]. J Mater Sci Mater Med, 2011, 23(2): 517-525.
[17]Supaphol P, Suwantong O, Sangsanoh P, et al. Electrospinning of biocompatible polymers and their potentials in biomedical applications [J]. Adv Polym Sci, 2011, 246: 213-239.
[18]Jang JH, Castano O, Kim HW. Electrospun materials as potential platforms for bone tissue engineering [J]. Adv Drug Deliv Rev, 2009,61(12): 1065-1083.
[19]Ki CS, Park SY, Kim HJ, et al. Development of 3D nanofibrous fibroin scaffold with high porosity by electrospinning: implications for bone regeneration [J]. Biotechnol Lett, 2007, 30(3): 405-410.
[20]Vaquette C, CooperWhite JJ. Increasing electrospun scaffold pore size with tailored collectors for improved cell penetration [J]. Acta Biomater, 2011, 7(6): 2544-2557.
[21]Lee JB, Jeong SI, Bae MS, et al. Highly porous electrospun nanofibers enhanced by ultrasonication for improved cellular infiltration [J]. Tissue Eng Part A, 2011, 17(21-22): 2695-2702.
[22]Liverani L, Roether JA, Nooeaid P, et al. Simple fabrication technique for multilayered stratified composite scaffolds suitable for interface tissue engineering [J]. Mater Sci Eng A Struct Mater, 2012, 557: 54-58.
[23]Wang Jianwen., Chen Chingyi, Kuo Yiming. Effect of experimental parameters on the formation of chitosanpoly(acrylic acid) nanofibrous scaffolds and evaluation of their potential application as DNA carrier [J]. J Appl Polym Sci, 2010, 115(3): 1769-1780.
[24]Grenha, A. Chitosan nanoparticles: a survey of preparation methods [J]. J Drug Target, 2012, 20(4): 291-300.
[25]Kalpana N, Shailendra KS, Dina NM. Chitosan nanoparticles:a promising system in novel drug delievry [J]. Chem Pharm Bull, 2010, 58(11): 1423-1430.
[26]Mishra D, Bhunia B, Banerjee I, et al. Enzymatically crosslinked carboxymethylchitosan/gelatin/nanohydroxyapatite injectable gels for in situ bone tissue engineering application [J]. Mater Sci Eng C Mar Biol Appl, 2011, 31(7): 1295-1304.
[27]Couto D, Hong Zhongkui, Mano JF. Development of bioactive and biodegradable chitosanbased injectable systems containing bioactive glass nanoparticles [J]. Acta Biomater, 2009, 5(1): 115-123.
[28]刘顺振,侯玉东. 骨组织工程支架材料的研究进展及临床应用 [J]. 中国组织工程研究与临床康复, 2011, 15(42): 7911-7914.
[29]Shin SY, Park HN, Kim KH, et al. Biological evaluation of chitosan nanofiber membrane for guided bone regeneration [J]. J Periodontol, 2005, 76(10): 1778-1784.
[30]Cho WJ, Kim JH, Oh SH, et al. Hydrophilized polycaprolactone nanofiber meshembedded poly(glycoliccolactic acid) membrane for effective guided bone regeneration [J]. J Biomed Mater Res A, 2009, 91(2): 400-407.
[31]Chen Zonggang, Wei Bo, Mo Xiumei, et al. Mechanical properties of electrospun collagen–chitosan complex single fibers and membrane [J]. Mater Sci Eng C Mar Biol Appl, 2009, 29(8): 2428-2435.
[32]Norowski PA, Mishra S, Adatrow PC, et al. Suture pullout strength and in vitro fibroblast and RAW 2647 monocyte biocompatibility of genipin crosslinked nanofibrous chitosan mats for guided tissue regeneration [J]. J Biomed Mater Res A, 2012, 100(11): 2890-2896.
[33]Datta P, Dhara S, Chatterjee J. Hydrogels and electrospun nanofibrous scaffolds of Nmethylene phosphonic chitosan as bioinspired osteoconductive materials for bone grafting [J]. Carbohydr Polym, 2012, 87(2): 1354-1362.
[34]TheinHan WW, Misra RDK. Biomimetic chitosannanohydroxyapatite composite scaffolds for bone tissue engineering [J]. Acta Biomater, 2009, 5(4): 1182-1197.
[35]Wang Shaofeng, Shen Lu, Zhang Weide, et al. Preparation and mechanical properties of chitosan/carbon nanotubes composites [J]. Biomacromolecules, 2005, 6(6): 3067-3072.
[36]Jafarkhani M, Fazlali A, Moztarzadeh F, et al. Mechanical and structural properties of polylactide/chitosan scaffolds reinforced with nanocalcium phosphate [J]. Iran Polym J, 2012, 21(10): 713-720.
[37]Venkatesan J, Ryu B, Sudha PN, et al. Preparation and characterization of chitosan–carbon nanotube scaffolds for bone tissue engineering [J]. I J Biol Macromol, 2012, 50(2): 393-402.
[38]Ma Xing, Wang Yang, Guo Hun, et al. Nanohydroxyapatite/chitosan spongelike biocomposite for repairing of rat calvarial criticalsized bone defect [J]. J Bioact Compat Polym, 2011, 26(4): 335-346.
[39]Pattnaik S, Nethala S, Tripathi A, et al. Chitosan scaffolds containing silicon dioxide and zirconia nano particles for bone tissue engineering [J]. Int J Biol Macromol, 2011, 49(5): 1167-1172.
[40]王玮,尹庆水,张余. 重组人骨形态发生蛋白2壳聚糖纳米微球的制备及体外细胞毒性 [J]. 中国组织工程研究与临床康复, 2011, 15(25): 4611-4614.
[41]黄鑫, 孟建国, 刘建,等. rhBMP2壳聚糖微球的制备及体外检测 [J]. 中国矫形外科杂志, 2009 ,17(15): 1172-1174.
[42]Hou Juan, Wang Jing, Cao Lingyan, et al. Segmental bone regeneration using rhBMP2loaded collagen/chitosan microspheres composite scaffold in a rabbit model [J]. Biomed Mater, 2012, 7(3): 035002.
[43]Rieux A, Ucakar B, Mupendwa BPK, et al. 3D systems delivering VEGF to promote angiogenesis for tissue engineering [J]. J Control Release, 2011, 150(3): 272-278.[44]Jayakumar R, Chennazhi KP, Muzzarelli RAA, et al. Chitosan conjugated DNA nanoparticles in gene therapy [J]. Carbohydr Polym, 2010, 79(1):1-8.
[45]Nie H, Ho ML, Wang CK, et al. BMP2 plasmid loaded PLGA/HAp composite scaffolds for treatment of bone defects in nude mice [J]. Biomaterials,2009, 30(5): 892-901.[46]卢华定,吕璐璐,赵慧清. 转化生长因子B1基因缓释的壳聚糖纳米粒制备及体外检测 [J]. 中国组织工程研究, 2012, 16(12): 2110-2124.
[47]Lai WF, Lin MCM. Nucleic acid delivery with chitosan and its derivatives [J]. J Control Release, 2009, 134(3): 158-168.
[48]Yu Wenyuan. A preliminary study on the evaluation of a novel gene delivery vectorTACS in vitro and in vivo via coexpressing hVEGF and hBMPgenes to repair criticalsize rabbit bone defects [J]. J Pharm Pharmacol, 2012, 6(5): 343-351.