蜂窝状聚氨酯支架的制备及性能评价
西安交通大学金属材料强度国家重点实验室,西安 10049
Fabrication and Evaluation of Polyurethane Scaffolds with HoneycombLike Structure
State Key Laboratory for Mechanical Behaviors of Materials, Xi′an Jiaotong University, Xi′an 710049, China
摘要 以2,2′-二硫代二乙醇为引发剂,经开环聚合法合成聚ε-己内酯二元醇,该大分子二元醇再与1,6-己二异氰酸酯加成聚合得到聚酯型聚氨酯,利用红外光谱仪、差示扫描量热仪和X射线衍射仪对合成聚氨酯结构和性能进行表征;然后,利用生物模板法制备出蜂窝状聚氨酯支架,分别用扫描电子显微镜、基于阿基米德原理的测量方法和万能材料试验机表征支架形貌、孔隙率和压缩性质;最后,通过小鼠成骨细胞MC3T3-E1与支架共培养法评价支架细胞相容性。结果表明,合成聚氨酯分子结构得到验证,呈半结晶性特点;所得聚氨酯支架呈现典型的蜂窝状孔结构,孔径范围为100~140 μm,孔隙率为77.2%±4.1%,压缩模量为299.02 kPa;肌动蛋白染色和死活细胞染色结果说明该蜂窝状聚氨酯支架能支持MC3T3-E1细胞黏附、生长和增殖,细胞形态良好。该蜂窝状聚氨酯支架在骨组织工程中具有良好的应用前景。
关键词 :
聚氨酯 ,
多孔支架 ,
蜂窝状 ,
骨组织工程
Abstract :In this study, poly (εcaprolactone) diol was synthesized via ringopening polymerization of εcaprolactone using 2,2′dithiodiethanol as an initiator, and then polyurethane was synthesized through addition polymerization of poly (εcaprolactone) and hexamethylene diisocyanate. Polyurethane was characterized by FTIR, XRD and DSC. Polyurethane scaffolds were fabricated by biotemplating technique, and their porous structure, porosity and mechanical properties were characterized by SEM, archimedes principle based method and mechanical test, respectively. MC3T3E1 cells were cultured on polyurethane scaffolds to evaluate their cytocompatibility. The results indicated that polyurethane scaffolds had a honeycomblike channels with a diameter range of 100 μm to 140 μm, and their porosity and compressive modulus were 772%±41% and 29902 kPa, respectively. Immunofluorescence staining and live/dead staining results indicated that MC3T3E1 cells could adhere and proliferate on the scaffolds. The results suggested that the honeycomblike polyurethane scaffolds were a promising candidate for bone tissue engineering.
Key words :
polyurethane
porous scaffolds
honeycomblike
bone tissue engineering
基金资助: 国家自然科学基金(50773062,50603020)
[1]易定华, 徐学增, 崔勤, 等. 新型人工心脏辅助装置材料组织炎症反应观察[J]. 心脏杂志, 2006, 18(2):146-148.
[2]Werkmeister JA, Adhikari R, White JF, et al. Biodegradable and injectable cureondemand polyurethane scaffolds for regeneration of articular cartilage [J]. Acta Biomater, 2010, 6: 3471-3481.
[3]Casper CL, Stephens JS, Tassi NG, et al. Controlling surface morphology of electrospun polystyrene fibers: Effect of humidity and molecular weight in the electrospinning process [J]. Macromolecules, 2003, 37: 573-578.
[4]Barnes CP, Sell SA, Boland ED, et al. Nanofiber technology: Designing the next generation of tissue engineering scaffolds [J]. Adv Drug Deliver Rev, 2007, 59: 1413-1433.[5]Qian Junmin, Xu Minghui, Suo Aili, et al.An innovative method to fabricate honeycomblike poly(ε-caprolactone)/nanohydroxyapatite scaffolds [J]. Mater Lett, 2013, 93: 72-76.
[6]王雪涛, 李静, 左开慧, 等. 冷冻干燥法制备的β-磷酸三钙多孔生物陶瓷支架 [J]. 中国组织工程研究, 2012, 25: 4697-4700.
[7]Naito Y, Shinoka T, Duncan D, et al. Vascular tissue engineering: towards the next generation vascular grafts [J]. Adv Drug Deliver Rev, 2011, 63: 312-323.
[8]Park CH, Rios HF, Jin Q, et al. Tissue engineering boneligament complexes using fiberguiding scaffolds [J]. Biomaterials, 2012,33: 137-145.
[9]Groeber F, Holeiter M, Hampel M, et al. Skin tissue engineeringIn vivo and in vitro applications [J]. Adv Drug Deliver Rev, 2011, 63: 352-366.
[10]Bray LJ, George KA, Ainscough SL, et al. Human corneal epithelial equivalents constructed on Bombyx mori silk fibroin membranes [J]. Biomaterials, 2011, 32: 5086-5091.
[11]Taylor PM, Cass AEG, Yacoub MH. Extracellular matrix scaffolds for tissue engineering heart valves [J]. Prog Pediatr Cardiol, 2006, 21(2):219-225.
[12]Nair LS, Laurencin CT. Biodegradable polymem as biomaterials [J]. Prog Polym Sci, 2007, 32: 762-798.
[13]Shields KJ, Beckman MJ, Bowlin GL, et al. Mechanical properties and cellular proliferation of electrospun collagen type II [J]. Tissue Eng, 2004,10(9,10): 1510-1517.
[14]赵宏生, 蔡海波, 潘肇琦, 等.生物载体用聚醚型聚氨酯多孔材料的研究[J]. 功能高分子学报, 2005, 18(3): 361-367.
[15]Yang L, Korom S, Welti M, et al. Tissue engineered cartilage generated from human trachea using DegraPol scaffold [J]. Eur J Cardiothorac Surg, 2003, 24: 201-207.
[16]Jsgdeesh B. FTIR spectroscopic studies of polyurethanes Part II abinitio quantum chemical studies of the relative strengths of carbonyl and ether hydrogenbondsin polyurethanes [J]. Molecular Spectroscopy, 1992, 48(10): 1363.
[17]Coleman MM, Zarian J. Fouriertransform infrared studies of polymer blends: poly(ε-caprolactone)-poly(vinyl chloride) system [J]. J Polym Sci Pol Phys, 1979, 17: 837-850. [18]Mondal S, Hu JL. Structural characterization and mass transfer properties of dense segmented polyurethane membrane: Influence of hard segment and soft segment crystal melting temperature [J]. Polym Eng Sci, 2008, 48: 233-239.
[19]刘检仔, 潘肇琦, 杲云. 硬段含量对嵌段聚脲结构与性能的影响 [J]. 华东理工大学学报(自然科学版), 2006, 32: 1187-1191.
[20]Liu Jin, Ma DeZhu. Study on synthesis and thermal properties of polyurethaneimide copolymers with multiple hard segments [J]. J Appl Polym Sci, 2002, 84: 2206-2215.
[21]Tang M, Chen W, Weir MD, et al. Human embryonic stem cell encapsulation in alginate microbeads in macroporous calcium phosphate cement for bone tissue engineering [J]. Acta Biomater, 2012, 8: 3436-3445.
[22]Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis [J]. Biomaterials, 2005, 26: 5474-91.
[23]Anselme K. Osteoblast adhesion biomaterials [J]. Biomaterials, 2000, 21(7):667-681.
[24]Ikada Y. Surface modification of polymers for modical applications [J].Biomaterials, 1994,15(10): 725-736.
[25]Kuo SM, Tsai SW, Huang LH, et al. Plasmamodified nylon meshes as supports for cell culturing [J]. Artif Cells Blood Substit Immobil Biotechnol, 1997, 25(6): 551-562.[26]Wang Yingjun, Yang Chunrong, Chen Xiaofeng.Development and characterization of novel biomimetic composite scaffolds based on bioglasscollagenhyaluronicacidphosphatidylserine for tissue engineering applications [J]. Macromol Mater Eng, 2006, 291: 254-262.
[27]Lee H, Jung HW, Kang IK, et al. Cell behaviour on polymer surfaces with different functional groups [J]. Biomaterials, 1994, 15: 705-711.
[1]
赵明璨 刘畅* . 脂肪干细胞在软骨组织工程中的研究进展 [J]. 中国生物医学工程学报, 2014, 33(4): 475-481.
[2]
李景峰1* 郑启新2 陈廖斌1表面矿化修饰煅烧骨/BMP2 活性多肽复合MC3T3-E1细胞构建组织工程骨 [J]. 中国生物医学工程学报, 2014, 33(3): 343-348.
[3]
李晓静1 王新木2 董研1* 苟中入3 . 基于壳聚糖的纳米材料在骨组织工程与再生医学中的研究进展 [J]. 中国生物医学工程学报, 2013, 32(5): 620-625.