Current Status and Progress of Laboratory Automation in Clinical Microbiology
Ge Yang1, Cao Wei1, Wu Yanfan1,2, Feng Yongtong1, Lin Wenqi1, Liu Han1, Meng Jiao1, Xu Zhengping1, Liu Yi1,2*
1(Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, Jiangsu, China) 2(School of Biomedical Engineering(Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Suzhou 215163, Jiangsu, China)
Abstract:With the global rise in multi-drug resistant organism (MDRO) infections, rapid and accurate diagnosis is crucial for effective treatment. However, with testing volumes increasing annually, clinical microbiology laboratories face challenges like staff shortages and cost constraints, creating a strong demand for automation. Total laboratory automation (TLA) in microbiology has developed significantly, offering benefits such as standardized testing, improved efficiency, enhanced safety, and lower long-term costs. This article reviewed the development of TLA, covering sample processing, culture, imaging, identification, and various leading automation systems worldwide. Despite TLA′s advantages, challenges remain, including costs, software/hardware integration, and adapting to diverse workflows. Therefore, the implementation of clinical microbiology TLA should not pursue complete replacement of manual operation,instead, it is necessary to adopt a gradual and human-machine collaborative strategy. Overall, the application of TLA is promising, and with continued technological progress, its role in clinical microbiology will likely expand further.
葛阳, 曹炜, 吴炎凡, 冯勇通, 林文琦, 刘寒, 孟姣, 徐正平, 刘祎. 临床微生物检验自动化流水线的现状与进展[J]. 中国生物医学工程学报, 2025, 44(5): 613-621.
Ge Yang, Cao Wei, Wu Yanfan, Feng Yongtong, Lin Wenqi, Liu Han, Meng Jiao, Xu Zhengping, Liu Yi. Current Status and Progress of Laboratory Automation in Clinical Microbiology. Chinese Journal of Biomedical Engineering, 2025, 44(5): 613-621.
[1] Ho CS, Wong CTH, Aung TT, et al.Antimicrobial resistance: A concise update[J].The Lancet Microbe, 2024: 100947. [2] Sy CL, Chen Paoyu, Cheng Chunwen, et al.Recommendations and guidelines for the treatment of infections due to multidrug resistant organisms[J].J Microbiol Immunol Infect, 2022, 55(3): 359-386. [3] Wang Xingmei, Guo Ziyao, Zhang Xi, et al.Inappropriate empirical antibiotic therapy was an independent risk factor of pediatric persistent s.aureus bloodstream infection[J].Eur J Pediatr, 2023, 182(2): 719-729. [4] Luo Yuting, Guo Zhaowang, Li Ying, et al.Appropriateness of empirical antibiotic therapy in hospitalized patients with bacterial infection: A retrospective cohort study[J].Infect Drug Resist, 2023, 16: 4555-4568. [5] Gohil SK, Septimus E, Kleinman K, et al.Stewardship prompts to improve antibiotic selection for urinary tract infection: the inspire randomized clinical trial[J].JAMA, 2024, 331(23): 2018-2028. [6] Yeary J, Hacker L, Liang SY.Managing antimicrobial resistance in the emergency department[J].Emerg Med Clin North Am, 2024, 42(2): 461-483. [7] Terra C, de Mattos ÂZ, Chagas MS, et al.Impact of multidrug resistance on the management of bacterial infections in cirrhosis[J].World J Clin Cases, 2023, 11(3): 534-544. [8] Yoon C, Park SY, Kim B, et al.Relationship between the appropriateness of antibiotic treatment and clinical outcomes/medical costs of patients with community-acquired acute pyelonephritis: A multicenter prospective cohort study[J].BMC Infect Dis, 2022, 22(1): 112. [9] Chumbita M, Puerta-Alcalde P, Yáñez L, et al.High rate of inappropriate antibiotics in patients with hematologic malignancies and pseudomonas aeruginosa bacteremia following international guideline recommendations[J].Microbiol Spectr, 2023, 11(4): e0067423. [10] Ma Zijun, Lai Chengcheng, Zhang Jun, et al.High mortality associated with inappropriate initial antibiotic therapy in hematological malignancies with klebsiella pneumoniae bloodstream infections[J].Sci Rep, 2024, 14(1): 13041. [11] Bourbeau PP, Ledeboer NA.Automation in clinical microbiology[J].J Clin Microbiol, 2013, 51(6): 1658-1665. [12] Bailey AL, Ledeboer N, Burnham CD.Clinical microbiology is growing up: The total laboratory automation revolution[J].Clin Chem, 2019, 65(5): 634-643. [13] Sautter RL, Thomson RB Jr.Consolidated clinical microbiology laboratories[J].J Clin Microbiol, 2015, 53(5): 1467-1472. [14] 中华医学会检验医学分会, 中国医学装备协会检验医学分会.临床微生物检验自动化流水线应用专家共识[J].中华检验医学杂志, 2024, 47(3): 224-233. [15] 杨启文, 徐英春.临床微生物实验室自动化现状与进展[J].中华临床实验室管理电子杂志, 2014, 2(1): 5. [16] Gajdács M.Anaerobes and laboratory automation: Like oil and water?[J].Anaerobe, 2019, 59: 112-114. [17] Csiki-Fejer E, Traczewski M, Procop GW, et al.Multicenter clinical performance evaluation of omadacycline susceptibility testing of enterobacterales on vitek 2 systems[J].J Clin Microbiol, 2023, 61(6): e0017423. [18] Lungu BC, Hutu I, Barrow PA.Molecular characterisation of antimicrobial resistance in e.coli isolates from piglets in the west region of romania[J].Antibiotics (Basel), 2023, 12(10): 1544. [19] Buchan BW.Commentary: Can automated blood culture systems be both new and improved?[J].J Clin Microbiol, 2022, 60(4): e0019222. [20] Turkeltaub L, Kashat L, Assous MV, et al.Estimating bacterial load in s.aureus and e.coli bacteremia using bacterial growth graph from the continuous monitoring blood culture system[J].Eur J Clin Microbiol Infect Dis, 2024, 43(10): 1931-1938. [21] Calderaro A, Chezzi C.Maldi-tof ms: A reliable tool in the real life of the clinical microbiology laboratory[J].Microorganisms, 2024, 12(2): 322. [22] Zimmermann S.Laboratory automation in the microbiology laboratory: An ongoing journey, not a tale?[J].J Clin Microbiol, 2021, 59(3): e02592-20. [23] Burckhardt I.Laboratory automation in clinical microbiology[J].Bioengineering (Basel), 2018, 5(4): 102. [24] Mencacci A, De Socio GV, Pirelli E, et al.Laboratory automation, informatics, and artificial intelligence: Current and future perspectives in clinical microbiology[J].Front Cell Infect Microbiol, 2023, 13: 1188684. [25] Antonios K, Croxatto A, Culbreath K.Current state of laboratory automation in clinical microbiology laboratory[J].Clin Chem, 2021, 68(1): 99-114. [26] Sails A, Tang YiWei.Total laboratory automation in clinical bacteriology[M]//Methods in Microbiology.London: Academic Press, 2015: 1-35. [27] Moreno-Camacho JL, Calva-Espinosa DY, Leal-Leyva YY, et al.Transformation from a conventional clinical microbiology laboratory to full automation[J].Lab Med, 2017, 49(1): e1-e8. [28] Theparee T, Das S, Thomson RB, et al.Total laboratory automation and matrix-assisted laser desorption ionization-time of flight mass spectrometry improve turnaround times in the clinical microbiology laboratory: A retrospective analysis[J].J Clin Microbiol, 2018, 56(1) : e01242. [29] Cherkaoui A, Renzi G, Vuilleumier N, et al.Copan wasplab automation significantly reduces incubation times and allows earlier culture readings[J].Clin Microbiol Infect, 2019, 25(11): 1430. [30] 曹炜, 刘祎, 葛阳, 等.一种细胞培养工作站[P].中国专利: 2023117747622, 2024-04-02. [31] 姜世民, 汪世存, 梅磊.一种带自动照相功能的智能化细菌培养箱[P].中国专利: 2016213358315, 2017-06-27. [32] Kim SC, Lee S, Kim S, et al.Comparison of clinical performance between bact/alert virtuo and bact/alert 3d blood culture systems[J].Ann Lab Med, 2019, 39(3): 278-283. [33] 中华医学会检验医学分会临床微生物学组.MALDI-TOF MS鉴定病原微生物临床应用专家共识[J].中华检验医学杂志, 2024, 47(9): 1013-1026. [34] Thomson RB Jr, McElvania E.Total laboratory automation: What is gained, what is lost, and who can afford it?[J].Clin Lab Med, 2019, 39(3): 371-389. [35] Cherkaoui A, Schrenzel J.Total laboratory automation for rapid detection and identification of microorganisms and their antimicrobial resistance profiles[J].Front Cell Infect Microbiol, 2022, 12: 807668. [36] Yo CH, Shen YH, Hsu WT, et al.Maldi-tof mass spectrometry rapid pathogen identification and outcomes of patients with bloodstream infection: A systematic review and meta-analysis[J].Microb Biotechnol, 2022, 15(10): 2667-2682. [37] Cherkaoui A, Riat A, Renzi G, et al.Diagnostic test accuracy of an automated device for the maldi target preparation for microbial identification[J].Eur J Clin Microbiol Infect Dis, 2023, 42(2): 153-159. [38] Jacot D, Sarton-Lohéac G, Coste AT, et al.Performance evaluation of the becton dickinson kiestra? identifa/suscepta[J].Clin Microbiol Infect, 2021, 27(8): 1167.e9-1167.e17. [39] De Carolis E, Ivagnes V, Magrì C, et al.Evaluation of autof ms2600 and mbt smart maldi-tof ms systems for routine identification of clinical bacteria and yeasts[J].Microorganisms, 2024, 12(2): 382. [40] Cherkaoui A, Renzi G, Vuilleumier N, et al.Performance of fully automated antimicrobial disk diffusion susceptibility testing using copan wasp colibri coupled to the radian in-line carousel and expert system[J].J Clin Microbiol, 2021, 59(9): e0077721. [41] Croxatto A, Marcelpoil R, Orny C, et al.Towards automated detection, semi-quantification and identification of microbial growth in clinical bacteriology: A proof of concept[J].Biomed J, 2017, 40(6): 317-328. [42] Dauwalder O, Michel A, Eymard C, et al.Use of artificial intelligence for tailored routine urine analyses[J].Clin Microbiol Infect, 2021, 27(8): 1168. [43] Faron ML, Buchan BW, Samra H, et al.Evaluation of wasplab software to automatically read chromid CPS elite agar for reporting of urine cultures[J].J Clin Microbiol, 2019, 58(1): e00540. [44] Faron ML, Buchan BW, Vismara C, et al.Automated scoring of chromogenic media for detection of methicillin-resistant staphylococcus aureus by use of wasplab image analysis software[J].J Clin Microbiol, 2016, 54(3): 620-624. [45] Faron ML, Buchan BW, Coon C, et al.Automatic digital analysis of chromogenic media for vancomycin-resistant-enterococcus screens using copan wasplab[J].J Clin Microbiol, 2016, 54(10): 2464-2469. [46] Foschi C, Gaibani P, Lombardo D, et al.Rectal screening for carbapenemase-producing enterobacteriaceae: a proposed workflow[J].J Glob Antimicrob Resist, 2020, 21: 86-90. [47] Gao Jing, Chen Qiujing, Peng Yiqian, et al.Copan walk away specimen processor (wasp) automated system for pathogen detection in female reproductive tract specimens[J].Front Cell Infect Microbiol, 2021, 11: 770367. [48] Cheng CWR, Ong CH, Chan DSG.Impact of bd kiestra inoqula streaking patterns on colony isolation and turnaround time of methicillin-resistant staphylococcus aureus and carbapenem-resistant enterobacterale surveillance samples[J].Clin Microbiol Infect, 2020, 26(9): 1201-1206. [49] Yue Pinli, Zhou Menglan, Zhang Lintao, et al.Clinical performance of bd kiestra inoqula automated system in a chinese tertiary hospital[J].Infect Drug Resist, 2020, 13: 941-947. [50] Lainhart W, Burnham CA.Enhanced recovery of fastidious organisms from urine culture in the setting of total laboratory automation[J].J Clin Microbiol, 2018, 56(8): e00546. [51] Croxatto A, Dijkstra K, Prodˊhom G, et al.Comparison of inoculation with the inoqula and wasp automated systems with manual inoculation[J].J Clin Microbiol, 2015, 53(7): 2298-2307. [52] Burckhardt I, Last K, Zimmermann S.Shorter incubation times for detecting multi-drug resistant bacteria in patient samples: Defining early imaging time points using growth kinetics and total laboratory automation[J].Ann Lab Med, 2019, 39(1): 43-49. [53] Zhang Weili, Wu Siying, Deng Jin, et al.Total laboratory automation and three shifts reduce turnaround time of cerebrospinal fluid culture results in the chinese clinical microbiology laboratory[J].Front Cell Infect Microbiol, 2021, 11: 765504.