Research Progress on Melanoma Postoperative Hydrogel Therapy Platform
Li Jinhua1, Sun Honggang2*
1(Department of Oncology, The First People′s Hospital of Jinzhong, Jinzhong 030600, Shanxi, China) 2(Southwest Institute of Technology and Engineering, Chongqing 400039, China)
Abstract:Melanoma has remarkably gained extensive attention owing to its high morbidity and mortality. Surgical resection is the mainstay for melanoma therapy in clinic. Inhibiting the recurrence of melanoma and healing after-surgical wounds have been great challenges in clinical studies. Hydrogels is a class of three-dimensional network of biomaterials with unique porous structures, and hydrogel therapy platforms can offer solutions to these challenges. In this review, we summarized recent developments of polymer-based hydrogels as therapy platforms for local delivery of therapeutic agents for postoperative melanoma therapy. According to the mechanisms that induce cancer cell death in melanoma, we focused on the latest research achievements of hydrogel chemotherapy, photodynamic therapy (PDT), photothermal therapy (PTT), immunotherapy, and combination therapies. Furthermore, the merits of postoperative therapy platform of the hydrogels were summarized and existing challenges and further perspectives of this platform for melanoma postoperative therapy were discussed.
李晋华, 孙宏刚. 黑色素瘤术后水凝胶治疗平台的研究进展[J]. 中国生物医学工程学报, 2025, 44(5): 622-630.
Li Jinhua, Sun Honggang. Research Progress on Melanoma Postoperative Hydrogel Therapy Platform. Chinese Journal of Biomedical Engineering, 2025, 44(5): 622-630.
[1] Zhao Chao, Chen Rimei, Chen Zhiping, et al.Bioinspired multifunctional cellulose nanofibril-based in situ liquid wound dressing for multiple synergistic therapy of the postoperative infected wound[J].ACS Appl Mater Inter, 2021, 13(43): 51578-51591. [2] Pourmanouchehri Z, Ebrahimi S, Limoee M, et al.Controlled release of 5-fluorouracil to melanoma cells using a hydrogel/micelle composites based on deoxycholic acid and carboxymethyl chitosan[J].Int J Biol Macromol, 2022, 206: 159-166. [3] Zhou Liangqin, Chen Fan, Hou Zishuo, et al.Injectable self-healing CuS nanoparticle complex hydrogels with antibacterial, anti-cancer, and wound healing properties[J].Chem Eng J, 2021, 409: 128224. [4] Lu Jianxiu, Wang Wenjuan, Xu Ze, et al.CaCO3-assistant synthesis of pH/near-infrared light-responsive and injectable sodium alginate hydrogels for melanoma synergistic treatment[J].J Colloid Interf Sci, 2023, 633: 657-667. [5] Ni Yifei, Zhao Wanzhu, Cheng Wenjing, et al.Lipopeptide liposomes-loaded hydrogel for multistage transdermal chemotherapy of melanoma[J].J Control Release, 2022, 351: 245-254. [6] Veisi H, Varshosaz J, Rostami M, et al.Thermosensitive TMPO-oxidized lignocellulose/cationic agarose hydrogel loaded with deferasirox nanoparticles for photothermal therapy in melanoma[J].Int J Biol Macromol, 2023, 238: 124126. [7] Ahmed B, Qadir MI, Ghafoor S.Malignant melanoma: skin cancer- diagnosis, prevention, and treatment[J].Crit Rev Eukar Gene, 2020, 30(4):291-297. [8] Li Jiehan, Luo Guang, Zhang Chuchu, et al.In situ injectable hydrogel-loaded drugs induce anti-tumor immune responses in melanoma immunochemotherapy[J].Mater Today Bio, 2022, 14: 100238. [9] Deng Yuanle, Zhang Qianyu, Li Yali, et al.Pectolinarigenin inhibits cell viability, migration and invasion and induces apoptosis via a ROS-mitochondrial apoptotic pathway in melanoma cells[J].Oncol Lett, 2020, 20(4): 1-1. [10] Wu Zhongcao, Zhuang Hui, Ma Bing, et al.Manganese-doped calcium silicate nanowire composite hydrogels for melanoma treatment and wound healing[J].Research, 2021, 20219780943. [11] Waks A G, Winer E P.Breast cancer treatment: a review[J].JAMA, 2019, 321(3): 288-300. [12] Chen Li, Yang Tianfeng, Weng Lin, et al.Integration of tumor elimination and tissue regeneration via selective manipulation of physiological microenvironments based on intelligent nanocomposite hydrogel for postoperative treatment of malignant melanoma[J].Adv Funct Mater, 2023, 33(49): 2304394. [13] Yuan Zhengchao, Zhang Lixiang, Jiang Shichao, et al.Anti-inflammatory, antibacterial, and antioxidative bioactive glass-based nanofibrous dressing enables scarless wound healing[J].Smart Materials in Medicine, 2023, 4: 407-426. [14] Hu Yongwei, Xu Yanteng, Mintz R L, et al.Self-intensified synergy of a versatile biomimetic nanozyme and doxorubicin on electrospun fibers to inhibit postsurgical tumor recurrence and metastasis[J].Biomaterials, 2023, 293: 121942. [15] Veisi H, Varshosaz J, Rostami M, et al.Thermosensitive TMPO-oxidized lignocellulose/cationic agarose hydrogel loaded with deferasirox nanoparticles for photothermal therapy in melanoma[J].Int J Biol Macromol, 2023, 238: 124126. [16] Charankumar K, Bagasariya D, Jain N, et al.Quality by design (QbD) abetted development of pioglitazone incorporated liposomes-loaded hyaluronic acid-based in situ hydrogel for the management of melanoma[J].J Drug Deliv Sci Tec, 2023, 84: 104453. [17] Zhou Li, Zheng Hua, Wang Shenqiang, et al.Biodegradable conductive multifunctional branched poly (glycerol-amino acid)-based scaffolds for tumor/infection-impaired skin multimodal therapy[J].Biomaterials, 2020, 262: 120300. [18] Li Yan, Wang Juan, Wang Yan, et al.Advanced electrospun hydrogel fibers for wound healing[J].Compos Part B-Eng, 2021, 223: 109101. [19] Zhao Jiuhong, Xu Wenxin, Zhao Zhining, et al.Intelligent nanocomposite hydrogels with simultaneous photothermal antitumor and antibacterial efficacy for cutaneous melanoma treatment[J].Compos Part B-Eng, 2022, 243: 110130. [20] 陈诗翰,凡杰夫,陆清声.水凝胶粘合剂在心脏和血管修复领域的研究现状[J].中国生物医学工程学报, 2025, 44(2):232-240. [21] Zhao Chao, Chen Rimei, Chen Zhiping, et al.Bioinspired multifunctional cellulose nanofibril-based in situ liquid wound dressing for multiple synergistic therapy of the postoperative infected wound[J].ACS Appl Mater Inter, 2021, 13(43): 51578-51591. [22] Hu Hao, Xu Fu-Jian.Rational design and latest advances of polysaccharide-based hydrogels for wound healing[J].Biomater Sci, 2020, 8(8): 2084-2101. [23] 马静,苏秀云,唐斌,等.骨修复中可吸收材料降解行为的研究进展[J].中国生物医学工程学报, 2023, 42(5):626-635. [24] Koehler J, Brandl FP, Goepferich A M.Hydrogel wound dressings for bioactive treatment of acute and chronic wounds[J].Eur Polym J, 2018, 100: 1-11. [25] Sun Ran, Chen Yuling, Yang Qiang, et al.Polysaccharide hydrogels regulate macrophage polarization and enhance the anti-tumor efficacy of melanoma[J].Int J Pharmaceut, 2022, 613: 121390. [26] Zhao Benbo, Zhao Mingda, Sun Honggang, et al.Preparation and characterization of photo-oxidative dual-crosslinked chitosan/hyaluronic acid hydrogels[J].React Funct Polym, 2022, 180: 105378. [27] Wang Siyu, Jing Huaqing, Yang Rui, et al.Magnetocaloric-responsive hydrogel nanoarchitectonics for pyroptosis-relay-immunotherapy to suppress post-operation tumor recurrence and metastasis[J].Adv Funct Mater, 2024,34: 2314194. [28] Zhao Jiuhong, Gao Nan, Xu Jiaqi, et al.Novel strategies in melanoma treatment using silver nanoparticles[J].Cancer Lett, 2023: 216148. [29] Marzi M, Chijan MR, Zarenezhad E.Hydrogels as promising therapeutic strategy for the treatment of skin cancer[J].J Mol Struct, 2022, 1262: 133014. [30] Kim HR, Cho YS, Chung SW, et al.Caspase-3 mediated switch therapy of self-triggered and long-acting prodrugs for metastatic TNBC[J].J Control Release, 2022, 346: 136-147. [31] Gong Zhuoran, Chen Min, Ren Qiushi, et al.Fibronectin-targeted dual-acting micelles for combination therapy of metastatic breast cancer[J].Signal Transduct Target Ther, 2020, 5: 12. [32] Lérida-Viso A, Estepa-Fernández A, Morellá-Aucejo Á, et al.Pharmacological senolysis reduces doxorubicin-induced cardiotoxicity and improves cardiac function in mice[J].Pharmacological Research, 2022, 183: 106356. [33] Zhao Mingda, Xu Ruiling, Yang Yuedi, et al.Bioabsorbable nano-micelle hybridized hydrogel scaffold prevents postoperative melanoma recurrence[J].J Control Release, 2023, 356: 219-231. [34] Xu Qizhen, Wang Yingying, Chen Taijun, et al.A distinctive nanocomposite hydrogel integrated platform for the healing of wound after the resection of melanoma[J].Materialia, 2020, 14: 100931. [35] Chen Li, Yang Tianfeng, Weng Lin, et al.Integration of tumor elimination and tissue regeneration via selective manipulation of physiological microenvironments based on intelligent nanocomposite hydrogel for postoperative treatment of malignant melanoma[J].Adv Funct Mater, 2023, 33(49): 2304394. [36] Li Yonggang, Zhang Peng, Xie Yujun, et al.Photosensitizers with multiple degradation modes for efficient and postoperatively safe photodynamic therapy[J].Biomaterials, 2023, 299: 122182. [37] Chen Qinjun, He Yongqing, Wang Yu, et al.Penetrable nanoplatform for “cold” tumor immune microenvironment reeducation[J].Advanced Science, 2020, 7(17): 2000411. [38] Beack S, Kong WH, Jung HS, et al.Photodynamic therapy of melanoma skin cancer using carbon dot-chlorin e6-hyaluronate conjugate[J].Acta Biomater, 2015, 26: 295-305. [39] Tang Xiaoxuan, Chen Xiaoli, Zhang Siming, et al.Silk-inspired in situ hydrogel with anti-tumor immunity enhanced photodynamic therapy for melanoma and infected wound healing[J].Adv Funct Mater, 2021, 31(17): 2101320. [40] Chen Shuiling, Luo Yang, He Yang, et al.In-situ-sprayed therapeutic hydrogel for oxygen-actuated Janus regulation of postsurgical tumor recurrence/metastasis and wound healing[J].Nat Commun, 2024, 15(1): 814. [41] 朱丽君,熊加宝,杜仲,等.近红外荧光-光热纳米粒子在宫颈癌光热治疗中的应用研究[J].中国生物医学工程学报, 2024, 43(4):499-507. [42] Chen Xiangyan, Tao Jiaojiao, Zhang Miao, et al.Iota carrageenan gold-silver NPs photothermal hydrogel for tumor postsurgical anti-recurrence and wound healing[J].Carbohydr Polym, 2022, 298: 120123. [43] Wang Xiaocheng, Xue Jianmi, Ma Bing, et al.Black bioceramics: combining regeneration with therapy[J].Adv Mater, 2020, 32(48): 2005140. [44] Ma Hongshi, Zhou Quan, Chang Jiang, et al.Grape seed-inspired smart hydrogel scaffolds for melanoma therapy and wound healing[J].ACS Nano, 2019, 13(4): 4302-4311. [45] Ding Xing, Liu Jianhua, Liu Dapeng, et al.Multifunctional core/satellite polydopamine@ Nd3+-sensitized upconversion nanocomposite: a single 808 nm near-infrared light-triggered theranostic platform for in vivo imaging-guided photothermal therapy[J].Nano Res, 2017, 10: 3434-3446. [46] Luo Meng, Winston DD, Niu Wen, et al.Bioactive therapeutics-repair-enabled citrate-iron hydrogel scaffolds for efficient post-surgical skin cancer treatment[J].Chem Eng J, 2022, 431: 133596. [47] Chang Rong, Zhao Donghui, Zhang Chen, et al.PMN-incorporated multifunctional chitosan hydrogel for postoperative synergistic photothermal melanoma therapy and skin regeneration[J].Int J Biol Macromol, 2023, 253: 126854. [48] Zhao Cancan, Wan Jianyu, Zhang Liangzhu, et al.Two-dimensional borocarbonitride nanosheet-engineered hydrogel as an all-in-one platform for melanoma therapy and skin regeneration[J].Chem Mater, 2022, 34(14): 6568-6581. [49] Erfani A, Diaz A E, Doyle P S.Hydrogel-enabled, local administration and combinatorial delivery of immunotherapies for cancer treatment[J].Mater Today,2023,65:227-243. [50] Dagher OK, Schwab RD, Brookens SK, et al.Advances in cancer immunotherapies[J].Cell, 2023, 186(8): 1814-1814. [51] Sanmamed MF, Chen Lieping.A paradigm shift in cancer immunotherapy: from enhancement to normalization[J].Cell, 2018, 175(2): 313-326. [52] Li Wanqiong, Zhu Xueqin, Zhou Xiuman, et al.An orally available PD-1/PD-L1 blocking peptide OPBP-1-loaded trimethyl chitosan hydrogel for cancer immunotherapy[J].J Control Release, 2021, 334: 376-388. [53] Zhu Wenxiang, Zhou Zheng, Yang Mengni, et al.Injectable nanocomposite immune hydrogel dressings: prevention of tumor recurrence and anti-infection after melanoma resection[J].Small, 2024: 2309476. [54] Xie Zongyu, Shen Junjian, Sun Haitao, et al.Polymer-based hydrogels with local drug release for cancer immunotherapy[J].Biomed Pharmacother, 2021, 137: 111333. [55] Wang Bo, Chen Jing, Caserto J S, et al.An in situ hydrogel-mediated chemo-immunometabolic cancer therapy[J].Nat Commun, 2022, 13(1): 3821. [56] Wu Bihan, Liang Juan, Yang Xuejiao, et al.A programmable peptidic hydrogel adjuvant for personalized immunotherapy in resected stage tumors[J].J Am Chem Soc, 2024, 146 (12): 8585-8597. [57] Wang Tianran, Ding Junfeng, Liang Shuang, et al.An adhesive immune-stimulating multifunctional hydrogel for potent tumor chemoimmunotherapy and postoperative wound healing promotion[J].Adv Funct Mater, 2023: 2312360. [58] Wang Xueqian, Wu Beibei, Zhang Yaqian, et al.Polydopamine-doped supramolecular chiral hydrogels for postoperative tumor recurrence inhibition and simultaneously enhanced wound repair[J].Acta Biomater, 2022, 153: 204-215. [59] Zhang Chen, Bu Wenbo, Ni Dalong, et al.Synthesis of iron nanometallic glasses and their application in cancer therapy by a localized Fenton reaction[J].Angew Chem Int Edit, 2016, 55(6): 2101-2106. [60] Zhao Peiran, Li Huiyan, Bu Wenbo.A forward vision for chemodynamic therapy: issues and opportunities[J].Angew Chem Int Edit, 2023, 62(7): e202210415. [61] Huang Xiaohua, Tang Lei, Xu Lin, et al.A NIR-II light-modulated injectable self-healing hydrogel for synergistic photothermal/chemodynamic/chemo-therapy of melanoma and wound healing promotion[J].J Mater Chem B, 2022, 10(38): 7717-7731.