|
|
Recent Advances of Nanoprecipitation and its Applications in Nano-drug Carriers |
Li Yan, Luo Cheng*, Zhou Jie |
School of Medicine, Yichun University, Yichun 336000,Jiangxi, China |
|
|
Abstract Nanomaterials have shown their great potentials of wide applications in biomedical fields. Nanoprecipitation is a facile and straight approach to fabricate various nanomaterials through the supersaturation of solutes when mixing with nonsolvent. Recently a great progress has been made in the fabrication technologies, especially the Flash nanoprecipitation and microfluidic nanoprecipitation, which has greatly improved the reaction efficiency and controllability, paving the way for large-scale preparation of nanoparticles with high quality. Up to date, nanoprecipitation has been utilized to fabricate various nanoparticles and drug carriers (curcumin, paclitaxel, doxorubicin, camptothecin, cisplatin, penicillin, etc.). The research progresses in nanoprecipitation are summed up in this review.
|
Received: 17 March 2017
|
|
|
|
|
[1] Lepeltier E, Bourgaux C, Couvreur P. Nanoprecipitation and the “ouzo effect”: application to drug delivery devices[J]. Adv Drug Deliver Rev, 2014, 71: 86-97. [2] Hornig S, Heinze T. Efficient approach to design stable water-dispersible nanoparticles of hydrophobic cellulose esters[J]. Biomacromolecules, 2008, 9 (5): 1487-1492. [3] Geissler A, Biesalski M, Heinze T, et al. Formation of nanostructured cellulose stearoyl esters via nanoprecipitation[J]. J Mater Chem A, 2014, 2 (4): 1107-1116. [4] Xie Hui, Smith J. Fabrication of PLGA nanoparticles with a fluidic nanoprecipitation system[J]. J Nanobiotechnol, 2010, 8 (1): 18. [5] Anton N, Bally F, Serra CA, et al. A new microfluidic setup for precise control of the polymer nanoprecipitation process and lipophilic drug encapsulation[J]. Soft Matter, 2012, 8 (41): 10628-10635. [6] Khan SA, Schneider M. Improvement of nanoprecipitation technique for preparation of gelatin nanoparticles and potential macromolecular drug loading[J]. Macromol Biosci, 2013, 13 (4): 455-463. [7] Steinhilber D, Witting M, Zhang Xuejiao, et al. Surfactant free preparation of biodegradable dendritic polyglycerol nanogels by inverse nanoprecipitation for encapsulation and release of pharmaceutical biomacromolecules[J]. J Control Release, 2013, 169 (3): 289-295. [8] Pustulka KM, Wohl AR, Lee HS, et al. Flash nanoprecipitation: particle structure and stability[J]. Mol Pharmaceut, 2013, 10 (11): 4367-4377. [9] Liu Ying, Cheng Chungyin, Liu Ying, et al. Mixing in a multi-inlet vortex mixer (MIVM) for flash nano-precipitation[J]. Chem Eng Sci, 2008, 63 (11): 2829-2842. [10] Liebert T, Hornig S, Hesse S, et al. Nanoparticles on the basis of highly functionalized dextrans[J]. J Am Chem Soc, 2005, 127 (30): 10484-10485. [11] Huo Meirong, Zhang Yong, Zhou Jianping, et al. Synthesis and characterization of low-toxic amphiphilic chitosan derivatives and their application as micelle carrier for antitumor drug[J]. Int J Pharmaceut, 2010, 394 (1-2): 162-173. [12] Hirsjrvi S, Peltonen L, Hirvonen J. Layer-by-layer polyelectrolyte coating of low molecular weight poly(lactic acid) nanoparticles[J]. Colloid Surface B, 2006, 49 (1): 93-99. [13] Bally F, Garg DK, Serra CA, et al. Improved size-tunable preparation of polymeric nanoparticles by microfluidic nanoprecipitation[J]. Polymer, 2012, 53 (22): 5045-5051. [14] Zhang Chuan, Pansare VJ, Prud'homme RK, et al. Flash nanoprecipitation of polystyrene nanoparticles[J]. Soft Matter, 2012, 8 (1): 86-93. [15] Liu Ying, Lu Yangcheng, Luo Guangsheng. Modified nanoprecipitation method for polysulfone nanoparticles preparation[J]. Soft Matter, 2014, 10 (19): 3414-3420. [16] Tang C, Amin D, Messersmith PB, et al. Polymer directed self-assembly of pH-responsive antioxidant nanoparticles[J]. Langmuir, 2015, 31 (12): 3612-3620. [17] Yang Hong, Qin Changyuan, Yu Chao, et al. RGD-Conjugated nanoscale coordination polymers for targeted T1- and T2-weighted magnetic resonance imaging of tumors in vivo[J]. Adv Funct Mater, 2014, 24 (12): 1738-1747. [18] Li Kangkang, Zhang Xi, Huang Qin, et al. Continuous preparation of zein colloidal particles by flash nanoprecipitation (FNP)[J]. J Food Eng, 2014, 127(4): 103-110. [19] Phillips DJ, Patterson JP, O'Reilly RK, et al. Glutathione-triggered disassembly of isothermally responsive polymer nanoparticles obtained by nanoprecipitation of hydrophilic polymers[J]. Polym Chem-UK, 2014, 5 (1): 126-131. [20] Chiu Shihjiuan, Wang Suyuan, Chou Hungchang, et al. Versatile synthesis of thiol- and amine-bifunctionalized silica nanoparticles based on the ouzo effect[J]. Langmuir, 2014, 30 (26): 7676-7686. [21] Bui L, Abbou S, Ibarboure E, et al. Encapsidation of RNA-polyelectrolyte complexes with amphiphilic block copolymers: toward a new self-assembly route[J]. J Am Chem Soc, 2012, 134 (49): 20189-20196. [22] Eunjung K, Jaemoon Y, Jihye C, et al. Synthesis of gold nanorod-embedded polymeric nanoparticles by a nanoprecipitation method for use as photothermal agents[J]. Nanotechnology, 2009, 20 (36): 365602. [23] Yallapu MM, Gupta BK, Jaggi M, et al. Fabrication of curcumin encapsulated PLGA nanoparticles for improved therapeutic effects in metastatic cancer cells[J]. J Colloid Interf Sci, 2010, 351 (1): 19-29. [24] Yallapu MM, Khan S, Maher DM, et al. Anti-cancer activity of curcumin loaded nanoparticles in prostate cancer[J]. Biomaterials, 2014, 35 (30): 8635-8648. [25] Karnik R, Gu F, Basto P, et al. Microfluidic platform for controlled synthesis of polymeric nanoparticles[J]. Nano Lett, 2008, 8 (9): 2906-2912. [26] Fonseca C, Simes S, Gaspar R. Paclitaxel-loaded PLGA nanoparticles: preparation, physicochemical characterization and in vitro anti-tumoral activity[J]. J Control Release, 2002, 83 (2): 273-286. [27] Danhier F, Lecouturier N, Vroman B, et al. Paclitaxel-loaded PEGylated PLGA-based nanoparticles: In vitro and in vivo evaluation[J]. J Control Release, 2009, 133 (1): 11-17. [28] Sun Jiashu, Xianyu Yunlei, Li Mengmeng, et al. A microfluidic origami chip for synthesis of functionalized polymeric nanoparticles[J]. Nanoscale, 2013, 5 (12): 5262-5265. [29] Sanson C, Schatz C, Le Meins J-F, et al. A simple method to achieve high doxorubicin loading in biodegradable polymersomes[J]. J Control Release, 2010, 147 (3): 428-435. [30] Upadhyay KK, Bhatt AN, Mishra AK, et al. The intracellular drug delivery and anti tumor activity of doxorubicin loaded poly(γ-benzyl l-glutamate)-b-hyaluronan polymersomes[J]. Biomaterials, 2010, 31 (10): 2882-2892. [31] Pang Zhiqing, Gao Huile, Yu Yuan, et al. Enhanced intracellular delivery and chemotherapy for glioma rats by transferrin-conjugated biodegradable polymersomes loaded with doxorubicin[J]. Bioconjugate Chem, 2011, 22 (6): 1171-1180. [32] Pang Zhiqing, Gao Huile, Yu Yuan, et al. Brain delivery and cellular internalization mechanisms for transferrin conjugated biodegradable polymersomes[J]. Int J Pharmaceut, 2011, 415 (1-2): 284-292. [33] Tong Rong, Cheng Jianjun. Controlled synthesis of camptothecin-polylactide conjugates and nanoconjugates[J]. Bioconjugate Chem, 2010, 21 (1): 111-121. [34] Ge J, Neofytou E, Lei J, et al. Protein-polymer hybrid nanoparticles for drug delivery[J]. Small, 2012, 8 (23): 3573-3578. [35] Kolishetti N, Dhar S, Valencia PM, et al. Engineering of self-assembled nanoparticle platform for precisely controlled combination drug therapy[J]. P Natl Acad Sci USA, 2010, 107 (42): 17939-17944. [36] Mi Yu, Zhao Jing, Feng Sishen. Targeted co-delivery of docetaxel, cisplatin and herceptin by vitamin E TPGS-cisplatin prodrug nanoparticles for multimodality treatment of cancer[J]. J Control Release, 2013, 169 (3): 185-192. [37] Dhar S, Gu FX, Langer R, et al. Targeted delivery of cisplatin to prostate cancer cells by aptamer functionalized Pt(IV) prodrug-PLGA-PEG nanoparticles[J]. P Natl Acad Sci USA, 2008, 105 (45): 17356-17361. [38] Sémiramoth N, Meo CD, Zouhiri F, et al. Self-assembled squalenoylated penicillin bioconjugates: an original approach for the treatment of intracellular infections[J]. ACS Nano, 2012, 6 (5): 3820-3831. [39] Tahara K, Sakai T, Yamamoto H, et al. Establishing chitosan coated PLGA nanosphere platform loaded with wide variety of nucleic acid by complexation with cationic compound for gene delivery[J]. Int J Pharmaceut, 2008, 354 (1-2): 210-216. [40] Caron J, Maksimenko A, Wack S, et al. Improving the antitumor activity of squalenoyl-paclitaxel conjugate nanoassemblies by manipulating the linker between paclitaxel and squalene[J]. Adv Healthc Mater, 2013, 2 (1): 172-185. [41] Shen Youqing, Jin Erlei, Zhang Bo, et al. Prodrugs forming high drug loading multifunctional nanocapsules for intracellular cancer drug delivery[J]. J Am Chem Soc, 2010, 132 (12): 4259-4265. [42] Zhang Xuejiao, Achazi K, Steinhilber D, et al. A facile approach for dual-responsive prodrug nanogels based on dendritic polyglycerols with minimal leaching[J]. J Control Release, 2014, 174(2): 209-216. [43] Zheng Zhiguo, Zhang Xingcai, Carbo D, et al. Sonication-assisted synthesis of polyelectrolyte-coated curcumin nanoparticles[J]. Langmuir, 2010, 26 (11): 7679-7681. [44] Li Wei, Yang Yinlong, Wang Chao, et al. Carrier-free, functionalized drug nanoparticles for targeted drug delivery[J]. Chem Commun, 2012, 48 (65): 8120-8122. [45] Zhou Mengjiao, Zhang Xiujuan, Yang Yinlong, et al. Carrier-free functionalized multidrug nanorods for synergistic cancer therapy[J]. Biomaterials, 2013, 34 (35): 8960-8967. [46] McDonald TO, Tatham LM, Southworth FY, et al. High-throughput nanoprecipitation of the organic antimicrobial triclosan and enhancement of activity against Escherichia coli[J]. J Mater Chem B, 2013, 1 (35): 4455-4465. [47] Behrendt JM, Wang Y, Willcock H, et al. Fluorescent nanoparticles from PEGylated polyfluorenes[J]. Poly Chem, 2013, 4 (5): 1333-1336. [48] Ye Fangmao, Wu Changfeng, Jin Yuhui, et al. A compact and highly fluorescent orange-emitting polymer dot for specific subcellular imaging[J]. Chem Commun, 2012, 48 (12): 1778-1780. [49] Jin Yuhui, Ye Fangmao, Zeigler M, et al. Near-infrared fluorescent dye-doped semiconducting polymer dots[J]. ACS Nano, 2011, 5 (2): 1468-1475. [50] Ye Fangmao, Wu Changfeng, Jin Yuhui, et al. Ratiometric temperature sensing with semiconducting polymer dots[J]. J Am Chem Soc, 2011, 133 (21): 8146-8149. [51] Akbulut M, Ginart P, Gindy ME, et al. Generic method of preparing multifunctional fluorescent nanoparticles using flash nanoprecipitation[J]. Adv Funct Mater, 2009, 19 (5): 718-725. [52] Reisch A, Runser A, Arntz Y, et al. Charge-controlled nanoprecipitation as a modular approach to ultrasmall polymer nanocarriers: making bright and stable nanoparticles[J]. ACS Nano, 2015, 9 (5): 5104-5116. [53] Wang Mingwei, Yang Nan, Guo Zhiqian, et al. Facile Preparation of AIE-active fluorescent nanoparticles through flash nanoprecipitation[J]. Ind Eng Chem Res, 2015, 54 (17): 4683-4688. [54] Zhang Yanjie, Clapp AR. Preparation of quantum dot-embedded polymeric nanoparticles using flash nanoprecipitation[J]. RSC Adv, 2014, 4 (89): 48399-48410. [55] Liu Rui, Sosa C, Yeh Yaowen, et al. A one-step and scalable production route to metal nanocatalyst supported polymer nanospheres via flash nanoprecipitation[J]. J Mater Chem A, 2014, 2 (41): 17286-17290. [56] Yan Xibo, Sivignon A, Alcouffe P, et al. Brilliant glyconanocapsules for trapping of bacteria[J]. Chem Commun, 2015, 51 (67): 13193-13196. [57] Deok Kong S, Sartor M, Jack Hu C-M, et al. Magnetic field activated lipid-polymer hybrid nanoparticles for stimuli-responsive drug release[J]. Acta Biomater, 2013, 9 (3): 5447-5452. [58] Sanson C, Diou O, Thévenot J, et al. Doxorubicin loaded magnetic polymersomes: theranostic nanocarriers for MR imaging and magneto-chemotherapy[J]. ACS Nano, 2011, 5 (2): 1122-1140. [59] Perevyazko IY, Delaney JT, Vollrath A, et al. Examination and optimization of the self-assembly of biocompatible, polymeric nanoparticles by high-throughput nanoprecipitation[J]. Soft Matter, 2011, 7 (10): 5030-5035. |
|
|
|