|
|
A Review of Fingerprint Recognition Technology |
Gu Chenlei, Liu Yuhang, Nie Zedong*, Li Jingzhen, Wang Lei |
Shenzhen Institutes of Advanced Technology,Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China |
|
|
Abstract Biometric verification has been drawing widespread attention in information security. Fingerprint recognition has been improved by the rapid development of computer graphics technology in the past years. In this paper, the review of fingerprint recognition technology in recent 20 years was conducted, the key technologies of fingerprint recognition, such as fingerprint image acquisition, image enhancement, feature extraction and matching, and data storage were introduced and summarized, the advantages and disadvantages of aforementioned technologies were concluded.
|
Received: 08 October 2016
|
|
|
|
|
[1] Fernandez-Saavedra B, Sanchez-Reillo R, Ros-Gomez R, et al. Small fingerprint scanners used in mobile devices: The impact on biometric performance [J]. IET Biometrics, 2016, 5: 28-36. [2] Makrushin A, Scheidat T, Vielhauer C. Capturing latent fingerprints from metallic painted surfaces using UV-VIS spectroscope [C] //Media Watermarking, Security, and Forensics 2015. Bellingham: SPIE Press, 2015: 94090B-94090B-12. [3] Auksorius E, Boccara AC. Fingerprint imaging from the inside of a finger with full-field optical coherence tomography [J]. Biomedical Optics Express, 2015, 6(11): 4465-4471. [4] Sankaran A, Vatsa M, Singh R. Latent fingerprint matching: A survey [J]. IEEE Access, 2014,2(2): 982-1004. [5] Palermo R, Rossion B, Rhodes G, et al. Do people have insight into their face recognition abilities? [J]. Quarterly Journal of Experimental Psychology, 2017, 70: 218-233. [6] Oh SK, Yoo SH, Pedrycz W. A comparative study of feature extraction methods and their application to P-RBF NNs in face recognition problem [J]. Fuzzy Sets and Systems, 2016, 305: 131-148. [7] Luo Lei, Chen Liang, Yang Jian, et al. Tree-structured nuclear norm approximation with applications to robust face recognition [J]. IEEE Trans Image Processing, 2016, 25: 5757-5767. [8] Raja KB, Raghavendra R, Vemuri VK, et al. Smartphone based visible iris recognition using deep sparse filtering [J]. Pattern Recognition Letters, 2015, 57: 33-42. [9] Barra S, Casanova A, Narducci F, et al. Ubiquitous iris recognition by means of mobile devices [J]. Pattern Recognition Letters, 2015, 57: 66-73. [10] Liu Nianfei, Zhang Man, Li Haiqing, et al. DeepIris: Learning pairwise filter bank for heterogeneous iris verification [J]. Pattern Recognition Letters, 2016, 82: 154-161. [11] Karakaya M. A study of how gaze angle affects the performance of iris recognition [J]. Pattern Recognition Letters, 2016, 82: 132-143. [12] 吴小燕, 李玲, 邓莎,等. 2014—2018 年中国生物识别技术行业市场前瞻与投资战略规划分析报告 [R].北京:前瞻产生研究院,2016. [13] Henry F. On the skin-furrows of the hand [J]. Nature, 1880, 22: 605. [14] 赵向欣. 中华指纹学 [M]. 北京: 群众出版社, 1997. [15] Fielding KH, Horner JL, Makekau CK. Optical fingerprint identification by binary joint transform correlation [J]. Optical Engineering, 1991, 30: 1958-1961. [16] Parziale G, Diaz-Santana E, Hauke R. The Surround ImagerTM: A multi-camera touchless device to acquire 3D rolled-equivalent fingerprints [C] //Advances in Biometrics. Secaucus: Springer-Verlag, 2006: 244-250. [17] Sousedik C, Busch C. Quality of fingerprint scans captured using Optical Coherence Tomography [C] //IEEE International Joint Conference on Biometrics(2014). Clearwater: IEEE, 2014: 1-8. [18] Tartagni M, Guerrieri R. A 390 dpi live fingerprint imager based on feedback capacitive sensing scheme [C] //1997 IEEE International Solid-State Circuits Conference. San Francisco: IEEE, 1997: 200-201. [19] Hashido R, Suzuki A, Iwata A, et al. A capacitive fingerprint sensor chip using low-temperature poly-Si TFTs on a glass substrate and a novel and unique sensing method [J]. IEEE Journal of Solid-State Circuits. 2003, 38: 274-280. [20] Setlak, Dale R. Finger biometric sensor with sensor electronics distributed over thin film and monocrystalline substrates and related methods [P]. US: US07616786B2, 2009-11-10. [21] 豪泰灵 SP,布萨特 JM,莱昂 BB. 电容式感测阵列调制: CN103376970B [P]. 2017-03-01. [22] 豪泰灵 SP,布萨特 JM,莱昂 BB. 电子设备: CN203480479U[P]. 2014-03-12. [23] 波普 BJ, 阿诺德 S,科尔勒特 BJ,等. 电容传感器封装: CN103425965A[P]. 2013-12-04. [24] 波普 BJ, 阿诺德 S,科尔勒特 BJ,等. 用于指纹识别感测的装置、电子设备及移动设备:CN203535651U[P]. 2014-04-09. [25] Riedijk FR, Hammersberg J. Fingerprint Sensor Element [P]. PCT: WO2005/124659, 2005-12-29. [26] Thoenblom H, Riedijk FR. Fingerprint sensing system and method [P]. PCT: WO2015/005855Al, 2015-01-15. [27] Riedijk, Robert F. Capacitive Fingerprint Sensor With Improved Sensing Element [P]. PCT: WO/2015/147727, 2015-10-01. [28] Bulea M, Solven D, Reynolds JK, et al. Single layer capacitive imaging sensors [P]. US: US2013/0181943A1, 2013-07-18. [29] George BF, Joseph GD, Pallavi S. Method and apparatus for two-dimensional finger motion tracking and control [P]. US: US08358815B2, 2013-01-22. [30] Dean GL, Erhart RA, Jandu J, et al. Integrated Fingerprint Sensor And Navigation Device [P]. US: US20150153923A1, 2015-06-04. [31] 蓝色. 形形色色的指纹解锁 [J]. 个人电脑, 2016(6): 74-79. [32] Han J, Kadowaki T, Sato K, et al. Fabrication of thermal-isolation structure for microheater elements applicable to fingerprint sensors [J]. Sensors and Actuators A: Physical, 2002, 100: 114-122. [33] Han J, Tan Z, Sato K, et al. Thermal characterization of micro heater arrays on a polyimide film substrate for fingerprint sensing applications [J]. Journal of Micromechanics and Microengineering, 2004, 15: 282-289. [34] Bicz W. Ultrasonic sensor for fingerprints recognition [C] //Optoelectronic and Electronic Sensors. Orlando: SPIE Press, 1995: 104-111. [35] Maeva A, Severin F. High resolution ultrasonic method for 3D fingerprint recognizable characteristics in biometrics identification [C]//2009 IEEE International Ultrasonics Symposium. Roma: IEEE, 2009: 2260-2263. [36] AuthenTec, Inc.(Melbourne,FL). Touch Based Data Communication Using Biometric Finger Sensor And Associated Methods [P]. US:US2010/0321159A1, 2010-12-23. [37] 倪苏平, 陈伟元. 光学指纹采集仪: CN1246801A [P]. 2004-11-03. [38] 李喆. 华为旗舰新机P9国内发布 携手徕卡共创手机摄影新高度 [J]. 个人电脑, 2016, 22(5):8-8. [39] 丁卫星, 刘君, 周春阳. 汽车指纹加密遥控器: CN101436342A [P]. 2009-05-20. [40] 钱玉娟. 小米发无孔式超声波指纹手机 两年磨一剑 [J]. 中国经济信息, 2016(2): 11-11. [41] 黄芬. 小米发布5s超声波指纹识别手机 [J]. 互联网天地, 2016(10):64-64. [42] Kass M, Witkin A. Analyzing Oriented Patterns [J]. Computer Vision, Graphics, and Image Processing, 1987, 37: 362-385. [43] Mehtre BM, Chatterjee B. Segmentation of Fingerprint Images A Composite Method [J]. Pattern Recognition, 1989, 22: 381-385. [44] O'Gorman L, Nickerson JV. Matched filter design for fingerprint image enhancement [C]//ICASSP-88, International Conference on Acoustics, Speech, and Signal Processing. New York: IEEE, 1988: 916-919. [45] Gabor D. Theory of communication [J]. Electrical Engineers, 1947, 94: 58-58. [46] Jain AK, Prabhakar S, Hong L, et al. Filterbank-based fingerprint matching [J]. IEEE Trans Image Processing, 2000, 9: 846-859. [47] Areekul V, Watchareeruetai U, Tantaratana S. Fast separable Gabor filter for fingerprint enhancement [C] //Biometric Authentication. Hong Kong: Springer-verlag, 2004: 403-409. [48] Bian Weixin, Xu Deqin. Application of Snake model in fingerprint segmentation [J]. Computer Engineering and Application, 2011, 47: 205-207. [49] Fei Zhigen, Guo Junjie. A new hybrid image segmentation method for fingerprint identification [C] //2011 IEEE International Conference on Computer Science and Automation Engineering (CSAE 2011). Miami: IEEE, 2011: 382-386. [50] Vijayaprasad P, Abdalla AGE. Applying neuro-fuzzy technique to the enhanced fingerprint image [C] //The 9th Asia-Pacific Conference on Communications. Piscataway: IEEE, 2003: 551-555. [51] Ahmed M, Ward R. A rotation invariant rule-based thinning algorithm for character recognition [J]. IEEE Trans Pattern Analysis and Machine Intelligence, 2002, 24: 1672-1678. [52] Patil PM, Suralkar SR, Sheikh FB. Rotation invariant thinning algorithm to detect ridge bifurcations for fingerprint identification [C] //17th IEEE International Conference on Tools with Artificial Intelligence. Hong Kong: IEEE, 2005: 641. [53] Soifer VA, Kotlyar VV, Khonina SN, et al. Fingerprint identification using the directions field [C] //Proceedings of the 1996 International Conference on Pattern Recognition. Vienna: IEEE, 1996: 586-590. [54] Cappelli R, Lumini A, Maio D, et al. Fingerprint classification by directional image partitioning [J]. IEEE Trans Pattern Analysis and Machine Intelligence, 1999, 21: 402-421. [55] Bazen AM, Gerez SH. Systematic methods for the computation of the directional fields and singular points of fingerprints [J]. IEEE Trans Pattern Analysis and Machine Intelligence, 2002, 24: 905-919. [56] Zhang Liang. Extraction of direction features in fingerprint image [J]. Experimental and Applied Mechanics, 2014, 518: 316-319. [57] Woo KL, Jae HC. Automatic real-time identification of fingerprint images using wavelets and gradient of Gaussian [C] //IEEE Asia Pacific Conference on Circuits and Systems. Piscataway: IEEE, 1997: 917-920. [58] Vaidehi V, Naresh BNT, Ponsamuel MA, et al. Fingerprint identification using cross correlation of field orientation[C]//The 2nd International Conference on Advanced Computing (ICoAC). Miami: Curran Associates, Inc, 2010: 66-69. [59] Wang Yi, Hu Jiankun. Global Ridge Orientation Modeling for Partial Fingerprint Identification [J]. Pattern Analysis and Machine Intelligence, 2011, 33: 72-87. [60] Karu K, Jain AK. Fingerprint classification [J]. Pattern Recognition, 1996, 29: 389-404. [61] Cai Xiumei, Fan Jiulun, Gao Xinbo. Directional filter masks for fingerprint enhancement ased on fibonacci sequences [J]. Pattern Recognition and Artificial Intelligence. 2011, 24: 360-367. [62] Deng Zhenghong, Ding Youjun. The Algorithm of Fingerprint Enhancement Base on Dynamic Direction [J]. Microelectronics & Computer, 2005, 22: 70-72,76. [63] Abu-Bakar SAR. Fingerprint matching based on directional image constructed using expanded Haar wavelet transform [C] //International Conference on Computer Graphics, Imaging and Visualization. Aachen: IEEE, 2004: 149-152. [64] Maio D, Maltoni D. A structural approach to fingerprint classification [C] //International Conference on Pattern Recognition. Vienna: IEEE, 1996: 578-585. [65] Ratha NK, Karu K, Shaoyun C, et al. A real-time matching system for large fingerprint databases [J]. IEEE Trans Pattern Analysis and Machine Intelligence, 1996, 18: 799-813. [66] Ren Qun, Tian Jie, He Yuliang, et al. Automatic fingerprint identification using cluster algorithm [C] //16th International Conference on Pattern Recognition. Quebec: IEEE, 2002: 398-401. [67] Palmer LR, Al-Tarawneh MS, Dlay SS, et al. Efficient fingerprint feature extraction: Algorithm and performance evaluation [C] //The 6th International Symposium on Communication Systems, Networks and Digital Signal Processing. Miam: Curran Associates, Inc., 2008: 581-584. [68] Mital DP, Teoh EK. An automated matching technique for fingerprint identification [C] //The 6th International Conference on Emerging Technologies and Factory Automation. New Jersey: IEEE, 1996: 87-92. [69] Bebis G, Deaconu T, Georgiopoulos M. Fingerprint identification using Delaunay triangulation [C] //International Conference on Information Intelligence and Systems. Rockville: IEEE, 1999: 452-459. [70] Mistry PI, Paunwala CN. Fusion fingerprint minutiae matching system for personal identification [C] //The 4th International Conference on Computing, Communications and Networking Technologies. Miami: Curran Associates Inc, 2013: 1-6. [71] Kaur R, Sandhu PS, Kamra A. A novel method for fingerprint feature extraction [C] //2010 International Conference on Networking and Information Technology. Miami: Curran Associates Inc, 2010: 1-5. [72] Fahmy MF, Thabet MA. A Fingerprint Segmentation Technique Based on Morphological Processing [C] //IEEE International Symposium on Signal Processing and Information Technology.. Athens: IEEE, 2013: 215-220. [73] Das D, Mukhopadhyay S. Fingerprint Image Segmentation Using Block-Based Statistics and Morphological Filtering [J]. Arabian Journal for Science and Engineering, 2015, 40: 3161-3171. [74] Singh P, Kaur L. Fingerprint feature extraction using morphological operations [C] //2015 International Conference on Advances in Computer Engineering and Applications. Athens: IEEE, 2015: 764-767. [75] Sankaran A, Vatsa M, Singh R. Multisensor optical and latent fingerprint database [J]. IEEE Access, 2015, 3: 653-665. [76] Gutierrez PD, Lastra M, Herrera F, et al. A High performance fingerprint matching system for large databases based on GPU [J]. IEEE Trans Information Forensics and Security, 2014, 9: 62-71. [77] Cappelli R, Ferrara M, Maltoni D. Minutia Cylinder-Code: A new representation and matching technique for fingerprint recognition [J]. IEEE Trans Pattern Analysis and Machine Intelligence, 2010, 32: 2128-2141. [78] Zhou Wei, Hu Jiankun, Wang Song, et al. Performance evaluation of large 3D fingerprint databases [J]. Electronics Letters, 2014, 50: 1060-1061. [79] 侯侣, 张胜斌. 生物检测装置: CN205302331U[P]. 2016-01-14. [80] 钟志鑫, 王信亮, 余旖,等. 指纹识别方法、装置和终端: CN106104574A[P]. 2016-11-09. [81] Park DH, Park BJ, Kim JM. Hydrochromic approaches to mapping human sweat pores [J]. Accounts of Chemical Research, 2016, 49: 1211-1222. [82] Pyo M, Lee J, Baek W, et al. Sweat Pore Mapping Using Hydrophilic Polymer Films [J]. Journal of Nanoscience and Nanotechnology, 2016, 16: 12263-12267. [83] 毛巨勇. 生物识别技术的发展与现状 [J]. 中国安防, 2010 (8): 36-39. [84] Nie Zedong, Liu Yuhang, Duan Changjiang, et al. Wearable biometric authentication based on human body communication [C] //2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN). Cambridge: Curran Associates Inc, 2015: 1-5. [85] 杨铁党, 徐雄伟, 张亦农,等. 线下移动支付方法及用于该方法的可穿戴式移动支付装置: CN105225102A[P]. 2016-01-06. [86] Xia Meng, Ma Jingjing, Li Jingzhen, et al. Gradient and SVM based biometric identification using human body communication [C] //IEEE International Conference of Online Analysis and Computing Science (ICOACS). Chongqing:IEEE.2016:61-65. [87] 王荣. 生物识别技术推动人工智能产业发展 [N]. 中国证券报, 2016-10-19. |
[1] |
Han Xiuzhi, Zhao Ximei, Yu Kexin, Wang Guodong. An Algorithm of the LBP Feature Extraction Method Combining Sparse Representation in Liver Diseases Recognition[J]. Chinese Journal of Biomedical Engineering, 2017, 36(6): 647-653. |
[2] |
Yu Zhen, Wu Lingyun, Ni Dong, Chen Siping, Li Shengli, Wang Tianfu, Lei Baiying. Fetal Facial Standard Plane Recognition via Deep Convolutional Neural Networks[J]. Chinese Journal of Biomedical Engineering, 2017, 36(3): 267-275. |
|
|
|
|