A Human Body Modeling for Risk Factors of Chronic Disease with an Artificial Neural Network
1 School of Medicine, Zhejiang University City College, Hangzhou 310015, China
2 Institute of Chronic Disease, Dept. Public Health, School of Medicine, Zhejiang University, Hangzhou 310058, China
Abstract:The aim of this study is to set up an individualized modeling method, based on the back propagation (BP) learning algorithm on an artificial neural network (ANN), for a risk factor control of chronic disease. The inputs of the model include the parameters about physical activity, food intake (salt, grains, vegetables, fruits, meat and poultry, eggs, fish, legumes, milk, oil, animal internal organs), drinking and smoking. And the outputs are systolic pressure, diastolic pressure, glucose, heart rate and BMI. The reliability of the model was test by residual analysis. The result showed that coincidence rates of measured outputs with the estimated ones of 9 models were over 80% among 13 volunteers. So it is concluded that the proposed method is generally practical, providing a basis for the design of individualized state control of chronic disease risk factor.
包家明1 王顺2 朱朝阳2* 王奕青1 徐雅诗1 . 基于神经网络的慢性病危险因素人体模型的建模方法[J]. 中国生物医学工程学报, 2014, 33(6): 715-721.
BAO Jia Ming1 WANG Shun2 ZHU Chao Yang2 WANG Yi Qing1 XU Ya Shi1 WANG Qiang2. A Human Body Modeling for Risk Factors of Chronic Disease with an Artificial Neural Network. journal1, 2014, 33(6): 715-721.
[1]World Health Organization. Global status report on noncommunicable diseases 2010[EB/OL]. http://whqlibdoc.who.int/publications/2011/ 9789240686458_eng.pdf, 2011-05-20/2013-06-01.
[2]World Health Organization. Innovative care for chronic conditions: building blocks for actions: global report[EB/OL]. http://www.who.int/
diabetesactiononline/about/iccc_exec_summary_eng.pdf, 2011-06-18/ 2013-06-01.
[3]World Health Organization. Preventing chronic diseases: a vital investment[EB/OL]. http://www.who.int/chp/chronic_disease_report/ contents/part1.pdf, 2009-09-02/2013-06-01.[4]World Health Organization. 2008-2013 Action plan for the global strategy for the prevention and control of noncommunicable diseases[EB/OL]. http://whqlibdoc.who.int/publications/2009/9789241597418 _eng.pdf, 2009-08-31/2013-06-01.
[5]中国卫生部, 全国慢性病预防控制工作规范(试行) [EB/OL], http://www.moh.gov.cn/jkj/s5878/201104/af27a68c69df4f2c9858cb0aa283433b.shtml, 2011-01-02/2013-06-01.
[6]白雅敏, 周敏茹、陈波,等. 社区综合防治示范点基本情况调查 [J]. 中国慢性病预防与控制, 2007, 15(1): 3-6.
[7]汪蔷, 朱朝阳, 包家立, 等. 一种慢性病危险因素的二值控制及应用 [J]. 仪器仪表学报,2011,32(8): 1788-1795.
[8]包家立. 生物系统建模及其生物鲁棒性 [M] //“10000个科学难题”信息科学编委会,编著. 10000个科学难题信息科学卷. 北京:科学出版社,2011: 367-369.
[9]Wang Shun, Bao Jiaming, Zhu Chaoyang, et al. A human model of risk factor for chronic disease with a neural network [C] // Long Mian, eds. World Congress on Medical Physics and Biomedical Engineering IFMBE Proceedings 39. Berlin: SpringerVerlag, 2012: 2292-2295.
[10]中国高血压防治指南修订委员会.中国高血压防治指南2010 [J]. 中华高血压杂志,2011, 19(8):701-743.
[11]中华医学会糖尿病学分会. 中国2型糖尿病防治指南(2010年版) [J].中华糖尿病杂志,2012,20(1):S1-S37.
[12]毛连根, 朱朝阳, 包家立, 等. 一种血压反馈控制系统的状态分析方法[J]. 中国生物医学工程学报,2010,29(2):259-264.
[13]陈瑞安, 符雁翎, 包家立, 等. 高危人群慢性病危险因素社区监测与控制 [J]. 中华全科医师杂志,2013,12(12):980-982.
[14]苗东升. 系统科学精要 [M]. 北京:中国人民大学出版社, 1998: 51-84.