The Study on Fabrication and Property of 3D Printed Double-CrosslinkedScaffold MaterialsSilk Fibroin/Alginate/Mineralized Collagen for Bone Repair
Wang Di1& , Gan Fangjin1& , Lian Xiaojie1*, Huang Ruoxi1 , Zhang Siruo2 , Xu Rui1
1(Research Center for Nano-Biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China) 2(Shanxi Key Laboratory of Functional Proteins, Shanxi Jinbo Bio-Pharmaceutical Co., Ltd, Taiyuan 030032, China)
Abstract:Bone repair materials should have good osteogenic activity and mechanical properties to provide a good microenvironment for bone regeneration. The 3D printing technology can prepare scaffolds with designed porous structures, biological activity and mechanical properties. In this study, SF-GMA was synthesized by reacting silk fibroin (SF) with the glycidyl methacrylate (GMA) to introduce the photomymeric group, and then mixed with sodium alginate (SA) to construct a double crosslinking system. To improve the osteoblast activity and mechanical properties, the material was further blended with silk fibroin nanofibers (SFF) and mineralized collagen (HAC). Bone repair scaffolds were prepared by 3D printing technology. Experimental results showed that when the SF-GMA was in the content of 1~4 wt%, the mean value of compression elastic modulus was increased to 0.23~0.37 MPa for the composite scaffolds. After blended with HAC, the degradation ratio of the scaffolds decreased, and the mean degradation ratio was 22%~32% on the 28th day. In addition, after integrating SF-GMA and HAC, the proliferation ability of MC3T3-E1 increased with the increase of SF-GMA concentration. This study can provide certain theoretical and experimental basis for bone tissue repair.
王迪, 甘芳巾, 连小洁, 黄若希, 张斯若, 徐睿. 3D打印双交联丝素/海藻酸钠/矿化胶原骨修复支架材料的构建及性能研究[J]. 中国生物医学工程学报, 2025, 44(3): 325-334.
Wang Di, Gan Fangjin, Lian Xiaojie, Huang Ruoxi, Zhang Siruo, Xu Rui. The Study on Fabrication and Property of 3D Printed Double-CrosslinkedScaffold MaterialsSilk Fibroin/Alginate/Mineralized Collagen for Bone Repair. Chinese Journal of Biomedical Engineering, 2025, 44(3): 325-334.
[1] 万鹏程, 俞秋纬, 王杰. 骨折延迟愈合骨不连的非手术治疗研究进展[J]. 四川中医, 2021, 39(6): 219-222. [2] 屠永刚, 任绍东, 马邦兴,等. 骨延迟愈合、骨不连的微创治疗现状[J]. 生物骨科材料与临床研究, 2019, 16(4): 37-39. [3] Mirkhalaf M, Men Y, Wang R, et al. Personalized 3D printed bone scaffolds: A review[J]. Acta Biomaterialia, 2023, 156: 110-124. [4] Hajinasab A, Saber-Samandari S, Ahmadi S, et al. Preparation and characterization of a biocompatible magnetic scaffold for biomedical engineering[J]. Materials Chemistry and Physics, 2018, 204: 378-387. [5] 刘建恒, 李明, 刘鐘阳,等. 3D打印多孔矿化胶原-硫酸钙仿生组织工程骨修复兔股骨髁包容性骨缺损的实验研究[J]. 创伤外科杂志, 2020, 22(6): 408-413. [6] 王子瑞, 朱金亮, 何志敏,等. 人工合成骨修复材料的临床应用及展望[J]. 生物骨科材料与临床研究, 2021, 18(4): 8-17. [7] 刘日旭, 吕文波, 高文山. 磷酸钙骨水泥改性相关研究与临床应用[J]. 中国组织工程研究, 2021, 25(34): 5537-5543. [8] Eltom A, Zhong G, Muhammad A. Scaffold techniques and designs in tissue engineering functions and purposes: a review[J]. Advances in Materials Science and Engineering, 2019,2019: 3429527. [9] 张震, 徐云莹, 李开南. 3D打印技术下磷酸三钙人工骨研究进展[J]. 国外医药(抗生素分册), 2022, 43(2): 80-86. [10] Ren Huajie, Lian Xiaojie, Niu Baolong, et al. The study of mechanical and drug release properties of the mineralized collagen/polylactic acid scaffold by tuning the crystalline structure of polylactic acid[J]. Journal of Biomaterials Science, Polymer Edition, 2021, 32(6): 749-762. [11] Lanza R, Langer R, Vacanti J, et al. Principles of Tissue Engineering[M]. Cambridge: Academic Press, 2020: 275-361. [12] Zhang Boqing, Wang Wenzhao, Gui Xingyu, et al. 3D printing of customized key biomaterials genomics for bone regeneration[J]. Applied Materials Today, 2022, 26: 1-8. [13] 满星云, 索海瑞, 刘家利,等. 基于三维打印的磷酸三钙骨组织工程支架烧结工艺研究[J]. 生物医学工程学杂志, 2020, 37(1): 112-118. [14] 张文婧, 王梦梦, 胡城,等. 丝素蛋白用作骨修复材料的研究进展[J]. 现代丝绸科学与技术, 2023, 38(1): 31-36. [15] 郑直, 宁美英, 李东. 丝素蛋白生物硅化材料在骨组织工程学中的应用[J]. 生物医学工程学杂志, 2018, 35(4): 643-646. [16] Rajput M, Mondal P, Yadav P, et al. Light-based 3D bioprinting of bone tissuescaffolds with tunable mechanical properties and architecture from photocurable silkfibroin[J]. International Journal of Biological Macromolecules, 2022, 202: 644-656. [17] 付南南. 基于甲基丙烯酰化明胶/丝素蛋白复合水凝胶的数字光处理3D打印及其性能研究[D]. 苏州:苏州大学, 2023. [18] 李宁宁, 徐铭恩, 索海瑞,等. 同轴打印双交联海藻酸钠/丝素蛋白血管网络支架[J]. 中国组织工程研究, 2019, 23(18): 2865-2870. [19] 李博, 王硕, 赵勇刚,等. 仿生矿化胶原骨材料用于儿童颅骨再生修复的最新研究进展[J]. 中国修复重建外科杂志, 2021, 35(3): 278-285. [20] 马士卿, 王晓婧, 彭诚. 仿生矿化胶原材料应用于引导骨再生术的研究进展[J]. 重庆医学, 2023, 52(7): 1072-1077. [21] 汪洋. 3D打印个性化羟基磷灰石(HA)假体修复颅骨缺损的实验研究[D]. 济南:山东大学, 2020. [22] Serrano DR, Kara A, Yuste I, et al. 3D printing technologies in personalized medicine, nanomedicines, and biopharmaceuticals[J]. Pharmaceutics, 2023, 15(2): 313. [23] Junqueira LA, Tabriz AG, Rousseau F, et al. Development of printable inks for 3D printing of personalized dosage forms: coupling of fused deposition modelling and jet dispensing[J]. Journal of Drug Delivery Science and Technology, 2023, 80: 104108. [24] Mu Xuan, Wang Yu, Guo Chengchen, et al. 3D printing of silk protein structures by aqueous solvent‐directed molecular assembly[J]. Macromolecular Bioscience, 2020, 20(1): 1900191. [25] 李相成, 索海瑞, 王玲,等. 利用同轴3D打印技术构建促内皮细胞生长类血管组织工程支架[J]. 中国生物医学工程学报,2020, 39(2): 207-214. [26] 郑扬, 李危石, 刘忠军. 骨组织3D打印:骨再生的未来[J]. 北京大学学报:医学版, 2015, 47(2): 203-206. [27] 易银. 不同钙源海藻酸钠水凝胶以及水凝胶微球复合支架的制备及相关性能的研究[D]. 重庆:重庆医科大学, 2023. [28] Maziz A, Leprette O, Boyer L, et al. Tuning the properties of silk fibroin biomaterial via chemical cross-linking[J]. Biomedical Physics & Engineering Express, 2018, 4(6): 065012. [29] Bai Shumeng, Zhang Xiuli, Qiang Lu, et al. Reversible hydrogel-solution system of silk with high beta-sheet content[J]. Biomacromolecules. 2014, 15(8): 3044-3051. [30] 梁俊杰. 矿化胶原/β-TCP 改性PCL基多级孔人工骨支架的构建及性能研究[D]. 太原:太原理工大学, 2023. [31] Kim SH, Yeon YK, Lee JM, et al. Precisely printable and biocompatible silk fibroin bioink for digital light processing 3D printing[J]. Nature Communications, 2018, 9 (1): 1620. [32] Ouyang Liliang, Yao Rui, Zhao Yu, et al. Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells[J]. Biofabrication, 2016, 8(3): 035020. [33] 宋宇帆. 海藻酸钠/丝素/胶原基生物墨水的可打印性评价及性能研究[D]. 太原:太原理工大学, 2023. [34] Jandyal A, Chaturvedi I, Wazir I, et al. 3D printing-a review of processes, materials and applications in industry 4.0[J]. Sustainable Operations and Computers, 2022, 3: 33-42. [35] Wu Deguang, Li Jian, Wang Chenxinqiao, et al. Injectable silk fibroin peptide nanofiber hydrogel composite scaffolds for cartilage regeneration[J]. Materials Today Bio, 2024, 25: 100962. [36] Wang Lu, Zhang Yufang, Xia Yijing, et al. Photocross-linked silk fibroin/hyaluronic acid hydrogel loaded with hDPSC for pulp regeneration[J]. International Journal of Biological Macromolecules, 2022, 215: 155-168. [37] 马跃, 胡艳磊, 刘亮, 等. 蚕丝蛋白基高强度水凝胶的制备及其生物应用[J]. 复合材料学报, 2023, 40(9): 4893-4916. [38] Wei Shuai, Wang Yu, Sun Yu, et al. Biodegradable silk fibroin scaffold doped with mineralized collagen induces bone regeneration in rat cranial defects[J]. International Journal of Biological Macromolecules, 2023, 235: 123861.