网站首页            期刊简介             编委会             投稿指南             期刊订阅             下载中心             在线留言            联系我们             English
  2025年4月23日 星期三  
文章快速检索
中国生物医学工程学报  2022, Vol. 41 Issue (1): 48-56    DOI: 10.3969/j.issn.0258-8021.2022.01.006
  论著 本期目录 | 过刊浏览 | 高级检索 |
基于同构化改进的U-Net结直肠息肉分割方法
沈志强, 林超男, 潘林, 聂炜宇, 裴玥, 黄立勤, 郑绍华*
(福州大学物理与信息工程学院,福州 350108)
A Colorectal Segmentation Method Based on U-Net Improved with Identical Design
Shen Zhiqiang, Lin Chaonan, Pan Lin, Nie Weiyu, Pei Yue, Huang Liqin, Zheng Shaohua*
(College of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, Fujian, China)
全文: PDF (7671 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 结肠镜检查广泛应用于结直肠癌的早期筛查和诊疗,但仅靠人工判读结肠息肉漏检率较高,有研究统计可达25%。基于深度学习的计算机辅助技术有助于提高息肉检测率,但目前深度学习的主流分割网络U-Net存在着两个局限:一是编解码的输出特征图之间存在着语义鸿沟;二是U-Net的双层卷积单元无法学习多尺度信息;割裂地看待容易使模型陷入局部最优。提出一种基于同构化改进的U-Net网络,不仅能缓解编解码特征间的语义鸿沟,且具备提取多尺度特征的能力。首先,在U-Net编解码器和跳层路径中,引入同构单元IU构成同构网络I-Net,以减少编解码器之间的语义鸿沟;接着,结合密集连接和残差连接的优点,设计密集残差单元DRU以学习多尺度信息;最后,将同构网络的处理单元初始化为密集单元,构成基于密集残差单元的同构网络DRI-Net。使用包含612幅结直肠镜息肉图像的公开数据集CVC-ClinicDB,采用5折交叉验证评估所提出的模型,DRI-Net可得Dice系数为90.06%,交并比(IoU)为85.52%,与U-Net相比,Dice系数提升8.50%,IoU提升11.03%。此外,在国际ISIC2017皮肤镜挑战数据集上验证模型在其他模态数据的泛化性,2 000幅训练,600幅测试,获得的Dice系数为86.57%,IoU为79.20%,与ISIC 2017排行榜第一名的方法相比,Dice系数提升1.67%,IoU提升2.70%。实验表明,DRI-Net能有效解决U-Net存在的局限,且泛化性良好。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
沈志强
林超男
潘林
聂炜宇
裴玥
黄立勤
郑绍华
关键词 息肉分割深度学习同构网络    
Abstract:Colonoscopy is a widely used technique for colon screening and polyp lesions diagnosis. Nevertheless, manual screening using colonoscopy suffers from a miss rate around 25% of polyps. Deep learning-based computer-aided diagnosis (CAD) for polyp detection has potentials of reducing the human errors. Polyp detection depends on encoder-decoder network (U-Net) for polyp segmentation. However, U-Net has two limitations, one is that the semantic gap exists between the feature maps from the encoder and decoder; the other one is convolutional layers in the encoder-decoder processing units fail to extract multi-scale information. In this work, we proposed an identical network (I-Net) to tackle the problems in a consolidated manner. The I-Net introduced identical units (IU) both in skip connections and encoder-decoder sub-networks of U-Net to reduce the semantic gap. Meanwhile, motivated by the dense and residual connections, we designed a dense residual unit (DRU) to learn multi-scale information. Finally, DRI-Net was developed by initializing IU to DRU, which not only alleviated the semantic gap between the encoder and the decoder but also learned multi-scale features. We evaluated the proposed methods on the CVC-ClinicDB dataset containing 612 colonoscopy images through five-fold cross validation. Experimental results demonstrated that the DRI-Net achieved Dice coefficient of 90.06% and intersection over union (IoU) of 85.52%. Compared to the U-Net, DRI-Net improved the Dice coefficient of 8.50% and IoU of 11.03%. In addition, we studied the generalization of the proposed methods on International Skin Imaging Collaboration (ISIC) 2017 dataset including a training set of 2 000 dermoscopy images for model training and a test set of 600 images for model evaluation. The study indicated that the I-Net achieved Dice coefficient of 86.57% and IoU of 79.20%. Compared to the first-place solution on ISIC 2017 leaderboard, the DRI-Net improved Dice coefficient of 1.67% and IoU of 2.70%. In conclusion, the results demonstrated that DRI-Net effectively overcome the limitations of U-Net and improved the segmentation accuracy in the polyp segmentation task, and showed the great generalization capability on other modality data.
Key wordspolyp segmentation    deep learning    identical network
收稿日期: 2021-04-13     
PACS:  R318  
基金资助:福建省自然科学基金(2020J01472)
通讯作者: * E-mail: sunphen@fzu.edu.cn   
引用本文:   
沈志强, 林超男, 潘林, 聂炜宇, 裴玥, 黄立勤, 郑绍华. 基于同构化改进的U-Net结直肠息肉分割方法[J]. 中国生物医学工程学报, 2022, 41(1): 48-56.
Shen Zhiqiang, Lin Chaonan, Pan Lin, Nie Weiyu, Pei Yue, Huang Liqin, Zheng Shaohua. A Colorectal Segmentation Method Based on U-Net Improved with Identical Design. Chinese Journal of Biomedical Engineering, 2022, 41(1): 48-56.
链接本文:  
http://cjbme.csbme.org/CN/10.3969/j.issn.0258-8021.2022.01.006     或     http://cjbme.csbme.org/CN/Y2022/V41/I1/48
版权所有 © 2015 《中国生物医学工程学报》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发