Lightweight EMG Artifact Detection Method Based on Improved YOLO Model for EEG
Sun Ge1, Lin Weihong2, Lou Hongwei1, Han Jinbo1*
1(Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China) 2(Department of Neurology, The First Hospital of Jilin University, Changchun 130021, China)
孙鸽, 林卫红, 娄洪伟, 韩金波. 基于改进YOLO模型的轻量化脑电图肌电伪影检测方法[J]. 中国生物医学工程学报, 2025, 44(1): 124-128.
Sun Ge, Lin Weihong, Lou Hongwei, Han Jinbo. Lightweight EMG Artifact Detection Method Based on Improved YOLO Model for EEG. Chinese Journal of Biomedical Engineering, 2025, 44(1): 124-128.
[1] Thomas J, Thangavel P, Peh WY, et al. Automated adult epilepsy diagnostic tool based on interictal scalp electroencephalogram characteristics: A six-center study[J]. International Journal of Neural Systems, 2021, 31(5): 2050074. [2] Rasheed K, Qayyum A, Qadir J, et al. Machine learning for predicting epileptic seizures using EEG signals: a review[J]. IEEE Reviews in Biomedical Engineering, 2020, 14: 139-155. [3] 于淑月, 李想, 于功敬, 等. 脑机接口技术的发展与展望[J]. 计算机测量与控制, 2019, 27(10): 5-12. [4] Guerrero-Mosquera C, Navia-Vázquez A. Automatic removal of ocular artefacts using adaptive filtering and independent component analysis for electroencephalogram data[J]. IET Signal Processing, 2012, 6(2): 99-106. [5] Di Mauro M, Longo M, Postiglione F, et al. Service function chaining deployed in an NFV environment: an availability modeling[C]//2017 IEEE Conference on Standards for Communications and Networking (CSCN). Helsinki: IEEE, 2017: 42-47. [6] Tejaswini V, Susitra D. Hybrid PSO-WOA for solving ORPD problem under unbalanced conditions[J]. Journal of Computational Mechanics, Power System and Control, 2019, 2(2): 10-20. [7] Bartunov S, Santoro A, Richards B, et al. Assessing the scalability of biologically-motivated deep learning algorithms and architectures[J]. Advances in Neural Information Processing Systems, 2018, 31: 9368-9378. [8] Dora M, Holcman D. Adaptive single-channel EEG artifact removal with applications to clinical monitoring[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2022, 30: 286-295. [9] Narmada A, Shukla MK. A novel adaptive artifacts wavelet Denoising for EEG artifacts removal using deep learning with Meta-heuristic approach[J]. Multimedia Tools and Applications, 2023, 82(26): 40403-40441. [10] Dhull SK, Singh KK. EEG artifact removal using canonical correlation analysis and EMD-DFA based hybrid denoising approach[J]. Procedia Computer Science, 2023, 218: 2081-2090. [11] Ghosh R, Phadikar S, Deb N, et al. Automatic eyeblink and muscular artifact detection and removal from EEG signals using k-nearest neighbor classifier and long short-term memory networks[J]. IEEE Sensors Journal, 2023, 23(5): 5422-5436. [12] Ingolfsson T M, Benatti S, Wang X, et al. Minimizing artifact-induced false-alarms for seizure detection in wearable EEG devices with gradient-boosted tree classifiers[J]. Scientific Reports, 2024, 14(1): 2980. [13] Nayak A B, Shah A, Maheshwari S, et al. An empirical wavelet transform-based approach for motion artifact removal in electroencephalogram signals[J]. Decision Analytics Journal, 2024, 10: 100420. [14] Zhao Shuo, Gao Han, Li Xuran, et al. An outlier detection based two-stage EEG artifact removal method using empirical wavelet transform and canonical correlation analysis[J]. Biomedical Signal Processing and Control, 2024, 92: 106022. [15] Redmon J. You only look once: Unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA: IEEE, 2016: 779-788. [16] Acharya UR, Oh SL, Hagiwara Y, et al. Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals[J]. Computers in Biology and Medicine, 2018, 100: 270-278. [17] Gorjan D, Gramann K, De Pauw K, et al. Removal of movement-induced EEG artifacts: current state of the art and guidelines[J]. Journal of neural engineering, 2022, 19(1): 011004.