摘要目前,意识障碍患者的意识恢复过程仍然不是很清楚。大多数相关研究采用组间比较方法,而意识恢复不仅是一个动态过程,而且会涉及不同脑区间的相互作用。因此,阐明意识恢复机制需要从时间和空间两个维度对大脑活动进行跟踪。利用脑电图的时空分辨率优势,跟踪41例意识障碍患者,共采集161例脑电信号。之后,比较不同意识恢复阶段患者脑电信号的非线性动力学参数,包括近似熵(ApEn)、样本熵(SampEn)和Lempel-Ziv复杂度(LZC)。在时间维度上,在患者意识恢复期间,全脑非线性动力学参数表现出非单调变化模式(LZC:0.299±0.053,0.295±0.060,0.279±0.049,0.302±0.053,0.307±0.069,0.326±0.049,0.334±0.046;P<0.05),且当患者从植物状态恢复到最小意识状态时,所有参数都出现拐点。在空间维度上,随着意识恢复,损伤区和非损伤区的非线性动力学参数也呈非单调变化模式,且不同脑区的非单调变化模式呈非同步。在脱离最小意识状态时,两区域差异呈极显著(损伤区 vs非损伤区:ApEn为0.608±0.042 vs 0.63±0.030,LZC为0.317±0.054 vs 0.351±0.039,SampEn为0.581±0.058 vs 0.615±0.043;P<0.01)。意识恢复过程在时间维度上呈非单调变化模式,在空间维度上呈非同步变化模式。这一发现有助于进一步阐明意识恢复机制,并且对临床上治疗意识障碍患者提供理论依据。
Abstract:The recovery of consciousness in patients with disorder of consciousness has not been well understood. Most previous studies usedcross-sectional design, as consciousness recovery is not only dynamic but also involves interactions between various brain regions. Elucidating the mechanism of recovery requires tracking brain activity both in temporal and in spatial dimensions. In this study we took advantage of the high temporal resolution and good spatial resolution of EEG to examine 41 patients with disorder of consciousness, analyzing a total of 161 resting-state EEG measurements. We compared the changes in EEG nonlinear dynamic features of brain activity among the patients in different stages of consciousness recovery, including approximate entropy, sample entropy, and Lempel-Ziv complexity. In the temporal dimension, EEG nonlinear dynamic features for the whole brain showed a non-monotonic trend during recovery (LZC: 0.299±0.053, 0.295±0.060, 0.279±0.049, 0.302±0.053, 0.307±0.069, 0.326±0.049, 0.334±0.046; P<0.05). When patients progressed from vegetative state to minimally conscious state, there was an inflection point in the EEG features. In the spatial dimension, changes in EEG features in injured and uninjured areas were also non-monotonic during consciousness recovery, and the non-monotonic changes in the two areas were non-synchronized. In emergence from minimally conscious state, the difference between the two regions was extremely significant (injured vs uninjured: ApEn: 0.608±0.042 vs 0.63±0.030; LZC: 0.317±0.054 vs 0.351±0.039; SampEn: 0.581±0.058 vs 0.615±0.043; P<0.01). The consciousness recovery pattern was non-monotonic in the temporal and asynchronous in the spatial dimension. These findings provided insights into the mechanisms of consciousness recovery following brain injury and could serve as a basis for the treatment and rehabilitation of patients with disorder of consciousness.
雷灵, 杨勇, 侯娜, 刘克洪, 吴莉, 程琪琪, 董腾飞, 胡晓华. 基于非线性时空动力学的意识障碍患者脑电图研究[J]. 中国生物医学工程学报, 2021, 40(1): 60-70.
Lei Ling, Yang Yong, Hou Na, Liu Kehong, Wu Li, Cheng Qiqi, Dong Tengfei, Hu Xiaohua. EEG Study of Patients with Disorder of Consciousness Based on Nonlinear Spatiotemporal Dynamics. Chinese Journal of Biomedical Engineering, 2021, 40(1): 60-70.
[1] Mahmood A, Lu D, Qu C, et al. Long-term recovery after bone marrow stromal cell treatment of traumatic brain injury in rats[J]. Journal of Neurosurgery, 2006, 104(2): 272-277. [2] Murphy TH, Dale C. Plasticity during stroke recovery: from synapse to behaviour[J]. Nature Reviews Neuroscience, 2009, 10(12): 861-872. [3] Benowitz LI, Carmichael ST. Promoting axonal rewiring to improve outcome after stroke[J]. Neurobiology of Disease, 2010, 37(2): 259-266. [4] Yang S, Liu K, Ding H, et al. Longitudinal in vivo intrinsic optical imaging of cortical blood perfusion and tissue damage in focal photothrombosis stroke model[J]. Journal of Cerebral Blood Flow & Metabolism, 2018, 21(2):1-13. [5] Thul A, Lechinger J, Donis J, et al. EEG entropy measures indicate decrease of cortical information processing in disorders of consciousness[J]. Clinical Neurophysiology, 2016, 127(2): 1419-1427. [6] Chennu S, Annen J, Wannez S, et al. Brain networks predict metabolism, diagnosis and prognosis at the bedside in disorders of consciousness[J]. Brain, 2017, 140(8): 2120-2132. [7] Edlow BL, Chatelle C, Spencer CA, et al. Early detection of consciousness in patients with acute severe traumatic brain injury[J]. Brain, 2017, 140(9): 2399-2414. [8] Li J, Shen J, Liu S, et al. Responses of patients with disorders of consciousness to habit stimulation: a quantitative EEG study[J]. Neuroscience Bulletin, 2018, 34(4): 691-699. [9] Rosanova M, Gosseries O, Casarotto S, et al. Recovery of cortical effective connectivity and recovery of consciousness in vegetative patients[J]. Brain, 2012, 135(4): 1308-1320. [10] van den Brink RL, Nieuwenhuis S, van Boxtel GJM, et al. Task-free spectral EEG dynamics track and predict patient recovery from severe acquired brain injury[J]. NeuroImage: Clinical, 2018, 17: 43-52. [11] Nudo RJ, Wise BM, Sifuentes F, et al. Neural substrates for the effects of rehabilitative training on motor recovery after ischemic infarct[J]. Science, 1996, 272(5269): 1791-1794. [12] Witte OW, Stoll G. Delayed and remote effects of focal cortical infarctions: secondary damage and reactive plasticity[J]. Advances in Neurology, 1997, 73(73): 207-227. [13] Lee JH, Donkelaar PV. The human dorsal premotor cortex generates on-line error corrections during sensorimotor adaptation[J]. Journal of Neuroscience, 2006, 26(12): 3330-3334. [14] Fatmehsari YR, Bahrami F. Lempel-Ziv complexity criteria for nonlinear analysis of gait in patients with Parkinson's disease[C]//Tehran, Iran:18th Iranian Conference of Biomedical Engineering (ICBME), 2011: 137-141. [15] Mmonti M, Vanhaudenhuyse A, Rcoleman M, et al. Willful modulation of brain activityin disorders of consciousness[J]. Chinese General Practice, 2010, 362(20): 1937-1938. [16] Fang S, Guoqing Z. Willful modulation of brain activity in disorders of consciousness[J]. Chinese General Practice, 2010, 362(20): 1937-1938. [17] Demertzi A, Antonopoulos G, Heine L, et al. Intrinsic functional connectivity differentiates minimally conscious from unresponsive patients[J]. Brain, 2015, 138: 2619-2631. [18] Thibaut A, Bruno MA, Chatelle C, et al. Metabolic activity in external and internal awareness networks in severely brain-damaged patients[J]. Journal of Rehabilitation Medicine, 2012, 44(6): 487-494. [19] Johan S, Olivia G, Marie-Aurélie B, et al. Diagnostic precision of PET imaging and functional MRI in disorders of consciousness: a clinical validation study[J]. Lancet, 2014, 384(9942): 514-522. [20] Chennu S, Finoia P, Kamau E, et al. Spectral signatures of reorganised brain networks in disorders of consciousness[J]. PLoS Computational Biology, 2014, 10(10): e1003887. [21] Sitt JD,King JR,EI KI, et al. Large scale screening of neural signatures of consciousness in patients in a vegetative or minimally conscious state[J]. Brain, 2014, 137(8): 2258-2270. [22] Castellanos NP, Paúl N, Ordóñez VE, et al. Reorganization of functional connectivity as a correlate of cognitive recovery in acquired brain injury[J]. Brain, 2010, 133(Pt 8): 2365-2381. [23] Giacino JT, Kathleen K, John W. The JFK coma recovery scale-revised: Measurement characteristics and diagnostic utility[J]. Archives of Physical Medicine & Rehabilitation, 2004, 85(12): 2020-2029. [24] Arnaud D, Scott M. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis[J]. J Neurosci Methods, 2004, 134(1): 9-21. [25] Poza J, Gómez C, García M, et al. Analysis of neural dynamics in mild cognitive impairment and Alzheimer's disease using wavelet turbulence[J]. Journal of Neural Engineering, 2014, 11(2): 26010. [26] Li Y, Liu XP, Ling XH, et al. Mapping brain injury with symmetrical-channels' EEG signal analysis-a pilot study[J]. Scientific Reports, 2014, 4(1): 1-7. [27] Pincus S. Approximate entropy (ApEn) as a complexity measure[J]. Chaos, 1995, 5(1): 110-117. [28] Calixto M. Cerebral response to patient's own name in the vegetative and minimally conscious states[J]. Neurology, 2007, 69(7): 708-709. [29] Portnova GV, Tetereva A, Balaev V, et al. Correlation of BOLD signal with linear and nonlinear patterns of EEG in resting state EEG-informed fMRI[J]. Frontiers in Human Neuroscience, 2018, 11: 654-654. [30] Kumar Y, Dewal ML, Anand RS. Epileptic seizures detection in EEG using DWT-based ApEn and artificial neural network[J]. Signal Image & Video Processing, 2014, 8(7): 1323-1334. [31] Richman JS, Moorman JR. Physiological time-series analysis using approximate entropy and sample entropy[J]. American Journal of Physiology Heart & Circulatory Physiology, 2000, 278(6): H2039-H2049. [32] Ruiz-Gómez S, Gómez C, Poza J, et al. Automated multiclass classification of spontaneous EEG activity in Alzheimer's disease and mild cognitive impairment[J]. Entropy, 2018, 20(1): e20010035. [33] Lempel A, Ziv J. On the complexity of finite sequences[J]. IEEE Transactions on Information Theory, 1976, 22(1): 75-81. [34] Fingelkurts AA, Fingelkurts AA, Bagnato S, et al. EEG oscillatory states as neuro-phenomenology of consciousness as revealed from patients in vegetative and minimally conscious states[J]. Consciousness & Cognition, 2012, 21(1): 149-169. [35] Bo D, Aijun S, Yujuan Z, et al. Zolpidem arouses patients in vegetative state after brain injury: quantitative evaluation and indications[J]. American Journal of the Medical Sciences, 2014, 347(3): 178-182. [36] Bagnato S, Boccagni C, Sant Angelo A, et al. Emerging from an unresponsive wakefulness syndrome: brain plasticity has to cross a threshold level[J]. Neuroscience & Biobehavioral Reviews, 2013, 37(10): 2721-2736. [37] Casali AG, Gosseries O, Rosanova M, et al. A theoretically based index of consciousness independent of sensory processing and behavior[J]. Science Translational Medicine, 2013, 5(198): 105r-198r. [38] 凌杏红,郝学良,刘小平,等. 基于对称导联脑电信号分析方法的脑损伤区域的判别[J]. 科学技术与工程,2014,14(11):1671-1815. [39] Noh H, Jeon J, Seo H. Systemic injection of LPS induces region-specific neuroinflammation and mitochondrial dysfunction in normal mouse brain[J]. Neurochemistry International, 2014, 69(4): 35-40. [40] Michalski D, Härtig W, Krügel K, et al. Region-specific expression of vesicular glutamate and GABA transporters under various ischaemic conditions in mouse forebrain and retina[J]. Neuroscience, 2013, 231(3): 328-344. [41] Cunningham AS, Salvador R, Coles JP, et al. Physiological thresholds for irreversible tissue damage in contusional regions following traumatic brain injury[J]. Brain, 2005, 128(8): 1931-1942.