Abstract:Exhaled breath analysis is a diagnostic tool that provides useful information for early clinical diagnosis by detecting the changes of characteristic components in human breath. Compared with traditional methods, exhaled breath analysis provides a non-invasive, rapid and easy screening tool that has promising potential applications in early diagnosis and screening of diseases. However, there are still some problems in the clinical applications of this technique. This review summarized three aspects, including exhaled breath collection, multiple detection methods and the application of this technology in the diagnosis of various diseases. At last, we discussed the limitations and prospects of exhaled breath analysis.
[1] 宋雪阳, 许朝霞, 王寺晶, 等. 中医闻诊客观化临床应用研究概述[J]. 中国中医药信息杂志, 2019,26(03):141-144. [2] Pauling L, Robinson AB, Teranishi R, et al. Quantitative analysis of urine vapor and breath by gas-liquid partition chromatography[J]. Proc Natl Acad Sci U S A, 1971,68(10):2374-2376. [3] Phillips M, Gleeson K, Hughes JM, et al. Volatile organic compounds in breath as markers of lung cancer: a cross-sectional study[J]. Lancet, 1999,353(9168):1930-1933. [4] 李雯雯, 段忆翔. 人体呼出气体分析的技术进展及其在非侵入式医学诊断方面的临床应用前景[J]. 化学进展, 2015,27(4):321-335. [5] 郑哲洲, 林雪娟. 电子鼻在医学诊断中的应用研究[J]. 世界科学技术(中医药现代化), 2012,14(6):2115-2119. [6] Schumer EM, Trivedi JR, van Berkel V, et al. High sensitivity for lung cancer detection using analysis of exhaled carbonyl compounds[J]. J Thorac Cardiovasc Surg, 2015,150(6):1517-1524. [7] Alex P, Wojciech F, Johannes W, et al. Analysis of volatile organic compounds in the breath of patients with stable or acute exacerbation of chronic obstructive pulmonary disease.[J]. Journal of Breath Research, 2018,12(3):036002. [8] 王泽. 小细胞肺癌患者呼出气体冷凝液中内皮素1和癌胚抗原检测的临床意义[D]. 锦州:辽宁医学院, 2011. [9] Mutle GM, Garey KW, Robbins RA, et al. Collection and analysis of exhaled breath condensate in humans[J]. American Journal of Respiratory and Critical Care Medicine, 2001,164(5):731-737. [10] 李玉. 新型管内固相微萃取在挥发性呼气代谢物分析中的应用[D]. 武汉:华中师范大学, 2016. [11] Zou Yingchang, Zhang Xi, Chen Xing, et al. Optimization of volatile markers of lung cancer to exclude interferences of non-malignant disease[J]. Cancer Biomark, 2014,14(5):371-379. [12] Lindinger W, Hansel A, Jordan A. On-line monitoring of volatile organic compounds at pptv levels by means of proton-transfer-reaction mass spectrometry (PTR-MS) medical applications, food control and environmental research[J]. International Journal of Mass Spectrometry and Ion Processes, 1998,173(3):191-241. [13] 李琦, 郭雷, 李恩有. 呼出气体分析在胃癌筛查和诊断中的研究进展[J]. 安徽医药, 2019,23(6):1061-1064. [14] Lourenco C, Turner C. Breath analysis in disease diagnosis: methodological considerations and applications[J]. Metabolites, 2014,4(2):465-498. [15] Westhoff M, Litterst P, Freitag L, et al. Ion mobility spectrometry for the detection of volatile organic compounds in exhaled breath of patients with lung cancer: Results of a pilot study[J]. Thorax, 2009,64(9):744-748. [16] Risby TH, Tittel FK. Current status of midinfrared quantum and interband cascade lasers for clinical breath analysis[J]. Optical Engineering, 2010,49(11):111123. [17] Kim S, Young C, Vidakovic B, et al. Potential and challenges for mid-infrared sensors in breath diagnostics[J]. IEEE Sensors Journal, 2010,10(1):145-158. [18] Wang Chuji, Sahay P. Breath analysis using laser spectroscopic techniques: breath biomarkers, spectral fingerprints, and detection limits[J]. Sensors (Basel), 2009,9(10):8230-8262. [19] 姜琛昱, 孙美秀, 李迎新, 等. 激光光谱技术在呼吸气体分析中的发展与未来[J]. 中国激光, 2018,45(2):197-205. [20] Hosseini ZS, Zad AI, Mortezaali A. Room temperature H2S gas sensor based on rather aligned ZnO nanorods with flower-like structures[J]. Sensors & Actuators: B. Chemical, 2015,207:865-871. [21] Persaud KC, Khaffaf SM, Payne JS, et al. Sensor array techniques for mimicking the mammalian olfactory system[J]. Sensors & Actuators: B. Chemical, 1996,36(1)267-273. [22] 王晗. 基于动态特征的便携式电子鼻系统的研究与实现[D]. 西安:西北工业大学, 2005. [23] Capelli L, Sironi S, Del Rosso R. Electronic noses for environmental monitoring applications[J]. Sensors, 2014,14(11):19979-20007. [24] Fitzgerald JE, Bui ETH, Simon NM, et al. Artificial nose technology: Status and prospects in diagnostics[J]. Trends in Biotechnology, 2016,35(1):33-42. [25] Shi Hao, Zhang Min, Adhikari B. Advances of electronic nose and its application in fresh foods: A review[J]. Crit Rev Food Sci Nutr, 2018,58(16):2700-2710. [26] Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA: A Cancer Journal for Clinicians, 2018,68(6):394-424. [27] 邹莹畅, 张希, 庄柳静, 等. 基于呼吸检测的癌症早期诊断技术研究进展[J]. 中华生物医学工程杂志, 2014,20(1):66-70. [28] Leunis N, Boumans M, Kremer B, et al. Application of an electronic nose in the diagnosis of head and neck cancer[J]. The Laryngoscope, 2014,124(6):1377-1381. [29] Chandran D, Ooi EH, Watson DI, et al. The use of selected ion flow tube-mass spectrometry technology to identify breath volatile organic compounds for the detection of head and neck squamous cell carcinoma: A pilot study[J]. Medicina, 2019,55(6):306. [30] Li Jie, Peng Yulan, Liu Yong, et al. Investigation of potential breath biomarkers for the early diagnosis of breast cancer using gas chromatography-mass spectrometry[J]. Clinica Chimica Acta, 2014,436:59-67. [31] Phillips M, Beatty JD, Cataneo RN, et al. Rapidpoint-of-care breath test for biomarkers of breast cancer and abnormal mammograms[J]. PLoS ONE, 2014,9(3):e90226. [32] Phillips M, Cataneo RN, Lebauer C, et al. Breath mass ion biomarkers of breast cancer[J]. Journal of Breath Research, 2017,11(1):16004. [33] Phillips M, Cataneo RN, Cruz-Ramos JA, et al. Prediction of breast cancer risk with volatile biomarkers in breath[J]. Breast Cancer Research and Treatment, 2018,170(2):343-350. [34] Zhou Wenzhao, Huang Chaoqun, Zou Xue, et al. Exhaled breath online measurement for cervical cancer patients and healthy subjects by proton transfer reaction mass spectrometry[J]. Analytical and Bioanalytical Chemistry, 2017,409(23):5603-5612. [35] Amal H, Shi DY, Ionescu R, et al. Assessment of ovarian cancer conditions from exhaled breath[J]. International Journal of Cancer, 2015,136(6):E614-E622. [36] Kahn N, Lavie O, Paz M, et al. Dynamic nanoparticle-based flexible sensors: Diagnosis of ovarian carcinoma from exhaled breath[J]. Nano Letters, 2015,15(10):7023-7028. [37] Zou Xue, Zhou Wenzhao, Lu Yan, et al. Exhaled gases online measurements for esophageal cancer patients and healthy people by proton transfer reaction mass spectrometry[J]. Journal of Gastroenterology and Hepatology, 2016,31(11):1837-1843. [38] Markar SR, Wiggins T, Antonowicz S, et al. Assessment of a noninvasive exhaled breath test for the diagnosis of oesophagogastric cancer[J]. JAMA Oncology, 2018,4(7):970-976. [39] Amal H, Leja M, Funka K, et al. Detection of precancerous gastric lesions and gastric cancer through exhaled breath[J]. Gut, 2016,65(3):400-407. [40] Chen Yunsheng, Zhang Yixia, Pan Fei, et al. Breath analysis based on surface-enhanced raman scattering sensors distinguishes early and advanced gastric cancer patients from healthy persons[J]. ACS Nano, 2016,10(9):8169-8179. [41] Durán-Acevedo CM, Jaimes-Mogollón AL, Gualdrón-Guerrero OE, et al. Exhaled breath analysis for gastric cancer diagnosis in Colombian patients[J]. Oncotarget, 2018,9(48):28805-28817. [42] Schuermans VNE, Li Z, Jongen ACHM, et al. Pilot study: Detection of gastric cancer from exhaled air analyzed with an electronic nose in chinese patients[J]. Surgical Innovation, 2018,25(5):429-434. [43] Broza YY, Khatib S, Gharra A, et al. Screening for gastric cancer using exhaled breath samples[J]. British Journal of Surgery, 2019,106(9):1122-1125. [44] Gasparri R, Santonico M, Valentini C, et al. Volatile signature for the early diagnosis of lung cancer[J]. Journal of Breath Research, 2016,10(1):16007. [45] Cai Xiangsheng, Chen Lu, Kang Tao, et al. A prediction model with a combination of variables for diagnosis of lung cancer[J]. Medical Science Monitor, 2017,23:5620-5629. [46] Tirzïte M, Bukovskis M, Strazda G, et al. Detection of lung cancer with electronic nose and logistic regression analysis[J]. Journal of Breath Research, 2019,13(1):16006. [47] Markar SR, Brodie B, Chin ST, et al. Profile of exhaled-breath volatile organic compounds to diagnose pancreatic cancer[J]. British Journal of Surgery, 2018,105(11):1493-1500. [48] Waltman CG, Marcelissen TAT, van Roermund JGH. Exhaled-breath testing for prostate cancer based on volatile organic compound profiling using an electronic nose device (AeonoseTM): A preliminary report[J]. European Urology Focus, 6 Nov, 2018 [Epub ahead of print]. [49] Amal H, Leja M, Funka K, et al. Breath testing as potential colorectal cancer screening tool[J]. International Journal of Cancer, 2016,138(1):229-236. [50] van Keulen KE, Jansen ME, Schrauwen RWM, et al. Volatile organic compounds in breath can serve as a non-invasive diagnostic biomarker for the detection of advanced adenomas and colorectal cancer[J]. Alimentary Pharmacology & Therapeutics, 2020,51(3):334-346. [51] Goldenberg SL, Nir G, Salcudean SE. A new era: artificial intelligence and machine learning in prostate cancer[J]. Nature Reviews Urology, 2019,16(7):391-403. [52] Sanyal P, Mukherjee T, Barui S, et al. Artificial intelligence in cytopathology: A neural network to identify papillary carcinoma on thyroid fine-needle aspiration cytology smears[J]. Journal of Pathology Informatics, 2018,9(1):43. [53] Le EPV, Wang Y, Huang Y, et al. Artificial intelligence in breast imaging[J]. Clinical Radiology, 2019,74(5):357-366. [54] World Health Organization (WHO). Global Tuberculosis Report 2019 [R]. 2019. [55] Phillips M, Cataneo RN, Condos R, et al. Volatile biomarkers of pulmonary tuberculosis in the breath[J]. Tuberculosis, 2007,87(1):44-52. [56] Phillips M, Basa-Dalay V, Bothamley G, et al. Breath biomarkers of active pulmonary tuberculosis[J]. Tuberculosis, 2010,90(2):145-151. [57] Kolk AHJ, van Berkel JJBN, Claassens MM, et al. Breath analysis as a potential diagnostic tool for tuberculosis[J]. The International Journal of Tuberculosis and Lung Disease, 2012,16(6):777-782. [58] Bruins M, Rahim Z, Bos A, et al. Diagnosis of active tuberculosis by e-nose analysis of exhaled air[J]. Tuberculosis, 2013,93(2):232-238. [59] Nakhleh MK, Jeries R, Gharra A, et al. Detecting active pulmonary tuberculosis with a breath test using nanomaterial-based sensors[J]. The European Respiratory Journal, 2014,43(5):1522-1525. [60] Sahota AS, Gowda R, Arasaradnam RP, et al. A simple breath test for tuberculosis using ion mobility: A pilot study[J]. Tuberculosis, 2016,99:143-146. [61] Zetola NM, Modongo C, Matsiri O, et al. Diagnosis of pulmonary tuberculosis and assessment of treatment response through analyses of volatile compound patterns in exhaled breath samples[J]. Journal of Infection, 2017,74(4):367-376. [62] Coronel Teixeira R, Rodríguez M, Jiménez De Romero N, et al. The potential of a portable, point-of-care electronic nose to diagnose tuberculosis[J]. Journal of Infection, 2017,75(5):441-447. [63] Yang Hsiaoyu, Shie Rueihao, Chang Chejui, et al. Development of breath test for pneumoconiosis: A case-control study[J]. Respiratory Research, 2017,18(1):178. [64] Yang Hsiaoyu, Peng Hsinyi, Chang Chejui, et al. Diagnostic accuracy of breath tests for pneumoconiosis using an electronic nose[J]. Journal of Breath Research, 2018,12(1):16001. [65] Dadamio J, Van den Velde S, Laleman W, et al. Breath biomarkers of liver cirrhosis[J]. Journal of Chromatography B, 2012,905:17-22. [66] 秦涛, 刘虎, 高署, 等. 肝癌患者呼气中挥发性标志物的筛选与定量分析[J]. 安徽医科大学学报, 2009,44(1):106-109. [67] Eng K, Alkhouri N, Cikach F, et al. Analysis of breath volatile organic compounds in children with chronic liver disease compared to healthy controls[J]. J Breath Res, 2015,9(2):26002. [68] De Vincentis A, Pennazza G, Santonico M, et al. Breath-print analysis by e-nose for classifying and monitoring chronic liver disease: A proof-of-concept study[J]. Scientific Reports, 2016,6(1):25337. [69] Alkhouri N, Cikach F, Eng K, et al. Analysis of breath volatile organic compounds as a noninvasive tool to diagnose nonalcoholic fatty liver disease in children[J]. European Journal of Gastroenterology & Hepatology, 2014,26(1):82-87. [70] Hanouneh IA, Zein NN, Cikach F, et al. The breathprints in patients with liver disease identify novel breath biomarkers in alcoholic hepatitis[J]. Clinical Gastroenterology and Hepatology, 2014,12(3):516-523. [71] 中华医学会糖尿病学分会, 国家基层糖尿病防治管理办公室. 国家基层糖尿病防治管理指南(2018)[J]. 中华内科杂志, 2018,57(12):885-893. [72] 葛均波, 徐永健, 王辰, 等. 内科学 [M]. 第9版. 北京:人民卫生出版社, 2018. [73] 周春燕, 药立波. 生物化学与分子生物学[M]. 第9版. 北京:人民卫生出版社, 2018. [74] 高照华. 呼气酮体、血酮体及尿酮体检测对糖尿病酮症诊断及治疗意义探讨[D]. 长春:吉林大学, 2014. [75] 臧宁, 徐邦牢, 翁瑜君. 呼出气体中丙酮的检测在1型糖尿病中的临床应用[J]. 实用医学杂志, 2015,31(12):2024-2026. [76] 牛小莉, 徐国栋, 李双成, 等. 内质网应激与中枢神经系统退行性疾病[J]. 河北医科大学学报, 2019,40(3):369-372. [77] Tiele A, Wicaksono A, Daulton E, et al. Breath-based non-invasive diagnosis of Alzheimer′s disease: A pilot study[J]. Joutnal of Breath Research, 2020,14(2):26003. [78] Bach JP, Gold M, Mengel D, et al. Measuring compounds in exhaled air to detect Alzheimer′s disease andParkinson′s disease[J]. PLoS ONE, 2015,10(7):e132227. [79] Lau H, Yu J, Lee H, et al. Investigation of exhaled breath samples from patients with Alzheimer′s disease using gas chromatography-mass spectrometry and an exhaled breath sensor system[J]. Sensors, 2017,17:1783-1788. [80] 王卫平, 孙锟, 常立文, 等. 儿科学 [M]. 第9版. 北京:人民卫生出版社, 2018. [81] 宋琳, 童笑梅. 呼气末一氧化碳对新生儿溶血性疾病的诊断价值[J]. 国际儿科学杂志, 2018,45(6):438-441. [82] Christensen RD, Lambert DK, Henry E, et al. End-tidal carbon monoxide as an indicator of the hemolytic rate[J]. Blood Cells Mol Dis, 2015,54(3):292-296. [83] Barak M, Oron T, Mimouni FB, et al. Effect of hematocrit on exhaled carbon monoxide in healthy newborn infants[J]. J Perinatol, 2005,25(12):784-787. [84] Okuyama H, Yonetani M, Uetani Y, et al. End-tidal carbon monoxide is predictive for neonatal non-hemolytic hyperbilirubinemia[J]. Pediatr Int, 2001,43(4):329-333. [85] 杜立中. 新生儿高胆红素血症早期筛查及风险评估若干进展[J]. 现代实用医学, 2019,31(3):281-283. [86] 文秋萍, 华子瑜. 呼气末一氧化碳与新生儿疾病[J]. 儿科药学杂志, 2018,24(2):60-64. [87] Jendrny P, Schulz C, Twele F, et al. Scent dog identification of samples from COVID-19 patients-A pilot study[J]. BMC Infect Dis, 2020,20(1):536.