Department of Biomedical Engineering, School of Medicine, Shenzhen University, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Shenzhen 518060, Guangdong, China
摘要对阿尔兹海默(AD)疾病进程的建模研究,有利于在其早期阶段——轻度认知障碍(MCI)进行更准确的诊断。不仅利用多模态影像数据,还分析模态间特征关系,用于增强与AD/MCI相关的特征表达能力。首先,基于典型相关分析融合不同模态间多个感兴趣区域并生成多模态关系特征表达;其次,基于稀疏最小二乘回归损失函数,以此获得稳定且有识别力的相关性表达特征;最后,使用交叉验证方法将随机选择的训练样本用于支持向量机分类模型,再对测试集受试者进行疾病阶段诊断。实验基于Alzheimer′s Disease Neuroimaging Initiative(ADNI)公共数据库的805位受试者,包括AD,MCI和正常受试者(NC)。此方法对于AD vs NC,MCI vs NC和p-MCI(进行性轻度认知障碍)vs s-MCI(稳定性轻度认知障碍)等3种不同类型数据,诊断结果分别为92.01%,74.83%和70.27%。与其他算法相比,分类准确率都有明显提高。表明所提出的方法能够有效应用于多模态数据对阿尔兹海默病的诊断分析研究。
Abstract:To better explore the underlying disease patterns, a study of modeling the disease procession of Alzheimer′s disease (AD) for early diagnosis of mild cognitive impairment(MCI)is necessary. In this work, we proposed a new method to represent the multi-modal correlations of ROI features for AD diagnosis. First, we applied canonical correlation analysis (CCA) to discover the relationships of ROIs among different modalities and specifically with sparse least square regression loss function to acquire the discriminative features. Then we trained a classification model via support vector machine (SVM) by using the selected features for diagnosis. The empirical studies with 805 subjects downloaded from the Alzheimer′s Disease Neuroimaging Initiative (ADNI) database showed that our method achieved promising improvement when compared with others methods. We achieved 92.01% in AD vs NC (normal control), 74.83% in MCI vs NC and 70.27% in p-MCI (progressive-mild cognitive impairment) vs s-MCI (stable-mild cognitive impairment). In conclusion, the proposed method is beneficial to the early diagnosis of the disease.
[1] Prince M, Comas-Herrera A, Knapp M, et al. World Alzheimer report 2016: improving healthcare for people living with dementia: coverage, quality and costs now and in the future [EB/OL]. https://www.alz.co.uk/research/world-report-2016,2016-09/2017-08.
[2] Alzheimer′s association. 2016 Alzheimer's disease facts and figures [J]. Alzheimer's & Dementia, 2016, 12(4): 459-509.
[3] Chan KY, Wang Wei, Wu Jingjing, et al. Epidemiology of Alzheimer's disease and other forms of dementia in China, 1990-2010: a systematic review and analysis [J]. The Lancet, 2013, 381(9882): 2016-2023.
[4] Frisoni GB, Fox NC, Jack CR, et al. The clinical use of structural MRI in Alzheimer disease [J]. Nat Rev Neurol, 2010, 6(2): 67-77.
[5] 郭艳娥, 王盼, 周波, 等. 阿尔茨海默病及轻度认知功能障碍患者海马及海马旁回灰质体积与认知功能的相关性 [J]. 中华老年心脑血管病杂志, 2016, 18(4): 339-344.
[6] 李晓舒, 王海宝, 余永强, 等. 阿尔茨海默病情绪记忆相关脑灰质体积改变 [J]. 中国医学影像技术, 2016, 32(7): 1015-1019.
[7] 崔瑞雪, 牛娜, 张颖, 等. 18F-FDG PET显像鉴别阿尔茨海默病与额颞叶痴呆临床价值 [J]. 中国现代神经疾病杂志, 2014, 14(3): 214-221.
[8] Chapman KR, Bing-Canar H, Alosco ML, et al. Mini mental state examination and logical memory scores for entry into Alzheimer′s disease trials [J]. Alzheimer′s Res. & Ther., 2016, 8(9): 1-11.
[9] Graham DP, Cully JA, Snow AL, et al. The Alzheimer′s disease assessment scale-cognitive subscale: normative data for older adult controls [J]. Alzheimer Disease & Associated Disorders, 2004, 18(4): 236-240.
[10] 杨银君. 磁共振磁敏感加权成像在阿尔兹海默病检查中的运用 [J]. 医学信息, 2014, 2014(17): 197-198.
[11] Salavati A, Houshmand S, Khiewvan B, et al. Clinical applications of PET/MRI in neurology: opportunities and challenges [J]. Journal of Nuclear Medicine, 2014, 55(Suppl): 1265-1265.
[12] Bailey DL, Pichler BJ, Gückel B, et al. Combined PET/MRI: multi-modality multi-parametric imaging is here [J]. Molecular Imaging and Biology, 2015, 17(5): 595-608
[13] Perrin RJ, Fagan AM, Holtzman DM. Multimodal techniques for diagnosis and prognosis of Alzheimer's disease [J]. Nature, 2009, 461(7266): 916-922.
[14] Liu Siqi, Liu Sidong, Cai Weidong, et al. Multimodal neuroimaging feature learning for multiclass diagnosis of Alzheimer's disease [J]. IEEE Transactions on Biomedical Engineering, 2015, 62(4): 1132-1140.
[15] Zhang Daoqiang, Wang Yaping, Zhou Luping, et al. Multimodal classification of Alzheimer's disease and mild cognitive impairment [J]. NeuroImage, 2011, 55(3): 856-867.
[16] Shaffer JL, Petrella JR, Sheldon FC, et al. Predicting cognitive decline in subjects at risk for Alzheimer disease by using combined cerebrospinal fluid, MR imaging, and PET biomarkers [J]. Radiology, 2013, 266(2): 583-591.
[17] Atrey Pk, Hossain Ma, El Saddik A, et al. Multimodal fusion for multimedia analysis: a survey [J]. Multimedia Systems, 2010, 16(6): 345-379.
[18] Vincent B, Boire JY. A general framework for the fusion of anatomical and functional medical images [J]. Neuro Image, 2001, 13(3): 410-424.
[19] Zhu Xiaofeng, Suk H-I, Shen Dinggang. Sparse discriminative feature selection for multi-class Alzheimer’s disease classification [C] //Machine Learning in Medical Imaging: 5th International Workshop (MLMI 2014). Cham: Springer International Publishing, 2014: 157-164.
[20] Lei Baiying, Jiang Feng, Chen Siping, et al. Longitudinal analysis for disease progression via simultaneous multi-relational temporal-fused learning [J]. Frontiers in Aging Neuroscience, 2017, 9(6): 1-17.
[21] Tibshirani R. Regression shrinkage and selection via the lasso [J]. Journal of the Royal Statistical Society. Series B (Methodological), 1996, 58(1): 267-288.
[22] Kohavi R. A study of cross-validation and bootstrap for accuracy estimation and model selection [C]//Proceedings of the 14th International Joint Conference on Artificial Intelligence (Volume 2). Montreal: Morgan Kaufmann Publishers Inc, 1995: 1137-1143.
[23] H rdle W, Simar L. Applied multivariate statistical analysis [M]// Canonical Correlation Analysis. Berlin: Springer Berlin Heidelberg, 2007: 321-330.
[24] Ye Jieping. Least squares linear discriminant analysis [C]//Proceedings of the 24th International Conference on Machine Learning. Corvalis: ACM, 2007: 1087-1093.
[25] Hardoon DR, Szedmak SR, Shawe-Taylor JR. Canonical correlation analysis: An overview with application to learning methods [J]. Neural Comp, 2004, 16(12): 2639-2664.
[26] Kakade SM, Foster DP. Multi-view regression via canonical correlation analysis [C] // Proceedings of the 20th Annual Conference on Learning Theory. San Diego: Springer Berlin Heidelberg, 2007: 82-96.