Progress of Electromagnetic Detection and Imaging of Magnetic Nanoparticles
Zhu Jianjian1,2 , Yang Wenhui 1, Wei Shufeng1 , Wang Zheng1 , Lv Xing1*
1 Institute of Electrical Engineering, University of Chinese Academy of Sciences, Beijing 100190, China 2 School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract:Over the past decade, magnetic nanoparticles have been developed from the initial MRI contrast agent into a multi-functional material for diagnosis, targeted drug delivery and magneto-hyperthermia. Magnetic nanoparticle imaging (MPI) is a computer tomography technique to construct 3d images by detecting the magnetic properties of superparamagnetic nanoparticles injected into the blood vessels. In addition to angiography and stem cell tracking, magnetic nanoparticle imaging has a range of exciting potential biomedical applications such as real-time fluoroscopy, diagnosis and staging of cancer, in vivo inflammation imaging, temperature display, and functional molecular imaging. MPI attempts to obtain a tracer distribution of measured volumes in a more sensitive, faster and safer way based on existing contrast imaging techniques.In this paper, we first introduced the application of magnetic nanoparticles in molecular imaging and diagnosis, and then introduced the principle of electromagnetic detection of magnetic nanoparticles and the present situation of research as well as problems about system topologies and imaging reconstruction. At the end of this article, we proposed future important trend of the technology.
朱健健,杨文晖,魏树峰,王铮,吕行. 纳米磁颗粒电磁探测及成像技术研究进展[J]. 中国生物医学工程学报, 2018, 37(3): 344-352.
Zhu Jianjian, Yang Wenhui, Wei Shufeng, Wang Zheng, Lv Xing. Progress of Electromagnetic Detection and Imaging of Magnetic Nanoparticles. Chinese Journal of Biomedical Engineering, 2018, 37(3): 344-352.
[1] Singh R, Lillard JW. Nanoparticle-based targeted drug delivery [J]. Experimental and Molecular Pathology, 2009, 86(3):215-223. [2] Gleich B, Weizenecker J. Tomographic imaging using nonlinear response of magnetic particles[J]. Nature, 2005, 435(7046):1214-1219. [3] Weizenecker J, Gleich B, Rahmer J, et al. Three-dimensional real-time in vivo magnetic particle imaging [J]. Physics in Medicine and Biology, 2009, 54(5): L1-L10 [4] Neuwelt EA, Hamilton BE, Varallyay CG, et al. Ultrasmall superparamagnetic iron oxides (USPIOs): A future alternative magnetic resonance (MR) contrast agent for patients at risk for nephrogenic systemic fibrosis (NSF) [J]. Kidney Int, 2009, 75(5):465-474. [5] Haegele J, Rahmer J, Duschka R, et al. Magnetic particle imaging (MPI): visualization and quantification of vascular stenosis phantoms [C]// International Workshop on Magnetic Particle Imaging. Piscataway: IEEE, 2014: 57-58. [6] Cetin S, Saritas EU, Unal G. Vessel tractography for magnetic particle imaging angiography[C]// International Workshop on Magnetic Particle Imaging. Piscataway: IEEE, 2015:1-1. [7] Bulte JWM, Walczak P, Bernard S, et al. Developing cellular MPI: initial experience[C]// International Workshop on Magnetic Particle Imaging. Piscataway: IEEE, 2010: 201-204. [8] Sigovan M, Boussel L, Sulaiman A, et al. Rapid-clearance iron nanoparticles for inflammation imaging of atherosclerotic plaque: initial experience in animal model [J]. Radiology, 2009; 252(2): 401-409 [9] Rahmer J, Antonelli A, Sfara C, et al. Nanoparticle encapsulation in red blood cells enables blood-pool magnetic particle imaging hours after injection [J]. Phys Med Biol, 2013; 58(12):3965-3977. [10] Pries R, Lindemann A, Luedtke-Buzug K, et al. Novel developed superparamagnetic dextran coated iron oxide nanoparticles (SPION) as a potential tool for HNSCC tumor cell detection and its influence on the biological properties[C]// International Workshop on Magnetic Particle Imaging. Piscataway: IEEE, 2014: 159-159. [11] Gupta AK, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications [J].Biomaterials, 2005, 26(18):3995-4021. [12] Bulte JWM, Gleich B, Weizenecker J, et al. Developing cellular MPI: initial experience[C]// The 16th Scientific Meeting and Exhibition of the International Society for Magnetic Resonance in Medicine (ISMRM). Toronto:ISMRM 2008: 1675-1675. [13] Bulte JWM, Walczak P, Gleich B, et al. MPI cell tracking: what can we learn from MRI ?[J].Proc Soc Photo Instrum Eng, 2011,7965(1):79650z. [14] Bulte JWM, Walczak P, Janowski M, et al. Quantitative “hot spot” imaging of transplanted stem cells using superparamagnetic tracers and magnetic particle imaging(MPI)[J]. Tomography, 2015, 1(2), 91-97. [15] Zheng B, Vazin T, Goodwill PW, et al. Magnetic particle imaging tracks the long-term fate of in vivo neural cell implants with high image contrast [J]. Scientific Reports, 2015, 5:14055. [16] Zheng B, von See MP, Yu E, et al. Quantitative magnetic particle imaging monitors the transplantation, biodistribution, and clearance of stem cells in vivo[J]. Theranostics, 2016, 6(3):291-301. [17] Them K, Salamon J, Szwargulski P, et al. Increasing the sensitivity for stem cell monitoring in system-function based magnetic particle imaging[J]. Physics in Medicine & Biology, 2016, 61(9):3279-3290. [18] Barreto JA, O′Malley W, Kubeil M, et al. Nanomaterials: Applications in cancer imaging and therapy [J]. Advanced Materials, 2011, 23 (12): H18-H40. [19] Lee JH, Huh YM, Jun YW, et al. Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging [J]. Nature Medicine, 2007, 13:95-99. [20] Sun C, Lee JS, Zhang M. Magnetic nanoparticles in MR imaging and drug delivery [J].Advanced Drug Delivery Reviews, 2008,60:1252-1265. [21] Gilchrist RK,Medal R, Shorey WD,et al. Selective inductive heating of lymph nodes [J]. Ann Oncol, 1957,146 (4):595-606. [22] Jordan A, Wust P, Fahling H,et al.Inductive heating ferrimagnetic particles and magnetic fluids: physical evaluation of their potential for hyperthermia [J]. Int J Hyperthermia, 1993, 9(1):51-68. [23] Atsumi T, Jeyadevan B, Sato Y,et al. Fundamental studies of hyperthermia using magnetic particles as thermo-seeds: 1: Development of magnetic particles suitable for hyperthermia [J]. Magn Soc Jpn, 2006, 30:555-560. [24] Rosensweig RE. Heating magnetic fluid with alternating magnetic field [J]. Journal of Magnetism & Magnetic Materials. 2002,252 (3):370-374. [25] Kobayashi T. Cancer hyperthermia using magnetic nanoparticles [J]. Biotechnology Journal, 2011, 6 (11):1342-1347. [26] Murase K, Aoki M, Banura N, et al.Usefulness of magnetic particle imaging for predicting the therapeutic effect of magnetic hyperthermia [J].Open Journal of Medical Imaging,2015,05(02), 85-99. [27] Kuboyabu T, Yabata I, Aoki M, et al. Magnetic particle imaging for magnetic hyperthermia treatment: visualization and quantification of the intratumoral distribution and temporal change of magnetic nanoparticles in vivo [J]. Open Journal of Medical Imaging, 2016, 6(1):1-15. [28] Ohki A, Kuboyabu T, Aoki M, et al. Quantitative evaluation of tumor response to combination of magnetic hyperthermia treatment and radiation therapy using magnetic particle imaging [J]. International Journal of Nanomedicine and Nanosurgery, 2016, 2:1-6. [29] Bauer LM, Situ SF, Griswold MA, et al. High-performance iron oxide nanoparticles for magnetic particle imaging-Guided hyperthermia (hMPI) [J]. Nanoscale, 2016, 8(24):12162. [30] Stehning C, Gleich B, Rahmer J. Simultaneous magnetic particle imaging (MPI) and temperature mapping using multi- color MPI [J]. International Journal on Magnetic Particle Imaging, 2016, 2(2):1612001 [31] Hensley D, Tay Z W, Dhavalikar R, et al. Combining magnetic particle imaging and magnetic fluid hyperthermia in a theranostic platform [J]. Physics in Medicine & Biology, 2017, 62(9):3483-3500. [32] Yang Xiaoqiang, Chen Yinghua. Yuan Renxu, et al. Folate-encoded and Fe3O4-loaded polymeric micelles for dual targeting of cancer cells [J]. Polymer, 2008,49:3477-3485 [33] Biederer S, Knopp T. Magnetization response spectroscopy of superparamagnetic nanoparticles for magnetic particle imaging [J].Phys D: Appl Phys,2009,42(20):205007 [34] Erbel M, Sattell TF, Buzugl TM. Commercialization of a magnetic particle spectrometer[C]//The 12th International Conference on Nanotechnology. Piscataway: IEEE, 2011:20-23. [35] Schmale I, Gleich B, Rahmer J,et al. Particle distinction within magnetic particle imaging [J]. Biomed Tech Biomed Eng, 2010, 55(S1):1-139 [36] Weaver JB, Rauwerdink AM,Hansen W. Magnetic nanoparticle temperature estimation [J].Med Phys, 2009, 36(5):1822-1829. [37] Rauwerdink AM, Weaver JB. Viscous effects on nanoparticle magnetization harmonics [J]. Journal of Magnetism & Magnetic Materials, 2010, 322 (6): 609-613. [38] Rauwerdink AM, Weaver JB. Nanoparticle temperature estimation in combined ac and dc magnetic fields [J]. Physics in Medicine and Biology, 2009, 54(6): L51-L55. [39] Zhong J, Liu W, Du Z, et al. A noninvasive, remote and precise method for temperature and concentration estimation using magnetic nanoparticles [J]. Nanotechnology, 2012, 23(7):075703. [40] Li Y, Liu W, Zhong J. Comparison of noninvasive and remote temperature estimation employing magnetic nanoparticles in DC and AC applied fields[C]// Instrumentation and Measurement Technology Conference. Piscataway: IEEE, 2012: 2738-2741. [41] Pi Shiqiang, Liu Wenzhong, Su Rijian. One-dimensional magnetic nanoparticle temperature imaging[C]// International Workshop on Magnetic Particle Imaging. Piscataway: IEEE, 2015:1-1. [42] Gleich B. Verfahren zur Ermittlung der rumlichen Verteilung magnetischer Partikel, A method for determining the spatial distribution of magnetic particles: DE, DE 10151778 A1 [P]. 2003. [43] Weizenecker J, Borgert J, Gleich B. A simulation study on the resolution and sensitivity of magnetic particle imaging [J]. Physics in Medicine and Biology, 2007, 52(21): 6363-6374. [44] Gleich B, Weizenecker J, Borgert J. Experimental results on fast 2D-encoded magnetic particle imaging [J]. Physics in Medicine & Biology, 2008, 53(6):N81-N84. [45] Weizenecker J, Gleich B, Borgert J. Magnetic particle imaging using a field free line [J]. Journal of Physics D: Applied Physics, 2008, 41(10): 105009. [46] Erbe M, Knopp T, Sattel TF, et al. Experimental generation of an arbitrarily rotated field‐free line for the use in magnetic particle imaging [J]. Medical Physics, 2011, 38(9):5200-5207. [47] Konkle JJ, Goodwill PW, Carrascozevallos OM, et al. Projection reconstruction magnetic particle imaging [J]. IEEE Transactions on Medical Imaging, 2013, 32(2):338-347. [48] Bente K, Weber M, Graeser M, et al. Electronic field free line rotation and relaxation deconvolution in magnetic particle imaging [J]. IEEE Transactions on Medical Imaging, 2015, 34 (2): 644-651. [49] Sattel TF, Knopp T, Biederer S, et al. Single-sided device for magnetic particle imaging[J]. Journal of Physics D: Applied Physics, 2009, 42(2): 1-5. [50] Sattel TF, Biederer S, Gleich B, et al. Magnetic field generation for multi-dimensional single-sided magnetic particle imaging[C]// Proceedings of the International Society for Magnetic Resonance in Medicine. Stockholm: ISMRM, 2010:3297-3297. [51] Sattel TF, Erbe M, Biederer S, et al. Single-sided magnetic particle imaging device for the sentinel lymph node biopsy scenario[C]// SPIE Symposium on Medical Imaging: Biomedical Applications in Molecular, Structural, and Functional Imaging. Bellingham: SPIE-Int Soc Optical Engneering,2012:25. [52] Grfe K, Sattel TF, Lüdtke-Buzug K, et al. Magnetic-particle-imaging for sentinel lymph node biopsy in breast cancer[M]// Magnetic Particle Imaging. Berlin:Springer Berlin Heidelberg, 2012:237-241. [53] Goodwill PW, Conolly SM. The X-space formulation of the magnetic particle imaging process: 1-D signal, resolution, bandwidth, SNR, SAR, and magnetostimulation [J]. IEEE Transactions on Medical Imaging, 2010, 29(11):1851-1859. [54] Goodwill PW, Conolly SM. Multidimensional X-Space Magnetic Particle Imaging [J]. IEEE Transactions on Medical Imaging, 2011, 30(9):1581-1590. [55] Goodwill P, Konkle J, Zheng B, et al. Projection X-space magnetic particle imaging [J]. IEEE Transactions on Medical Imaging, 2012, 31(5): 1076-1085. [56] Knopp T, Sattel T, Biederer S, et al. Model-based reconstruction for magnetic particle imaging [J]. IEEE Transactions on Medical Imaging, 2010, 29(1):12-18. [57] Knopp T,Weber A. Sparse reconstruction of the magnetic particle imaging system matrix [J]. IEEE Transactions on Medical Imaging, 2013, 32(8):1473-1480. [58] Knopp T,Weber A. Local system matrix compression for efficient reconstruction in magnetic particle imaging [J]. Advances in Mathematical Physics, 2015, 2015:1-7. [59] Rahmer J, Weizenecker J, Gleich B, et al. Signal encoding in magnetic particle imaging: Properties of the system function [J]. BMC Med Imaging, 2009, 9(1):4. [60] Grüttner M, Knopp T, Franke J, et al. On the formulation of the image reconstruction problem in magnetic particle imaging [J]. Biomedizinische Technik/Biomedical Engineering, 2013, 58 (6): 583-591. [61] Knopp T, Biederer S, Sattel TF, et al. 2D model-based reconstruction for magnetic particle imaging[J]. Medical Physics, 2010, 37(2): 485-491. [62] Knopp T, Rahmer J, Sattel TF, et al. Weighted iterative reconstruction for magnetic particle imaging [J]. Physics in Medicine and Biology, 2010, 55(6): 1577-1589. [63] Knopp T, Erbe M, Biederer S, et al. Efficient generation of a magnetic field-free Line [J]. Medical Physics, 2010, 37(7): 3538-3540 [64] Franke J, Heinen U, Matthies L, et al. First hybrid MPI-MRI imaging system as integrated design for mice and rats: Description of the instrumentation setup[C]//International Workshop on Magnetic Particle Imaging. Piscataway: IEEE, 2013:1-1. [65] Franke J, Heinen U, Niemann V, et al. Alternative hybrid MPI-MRI imaging system design: Superconductive field generator topology[C]// International Workshop on Magnetic Particle Imaging. Piscataway: IEEE, 2013:1-1. [66] Vogel P, Lother S, Rckert MA, et al. MRI meets MPI: A bimodal MPI-MRI tomograph [J]. IEEE Transactions on Medical Imaging, 2014, 33(10), 1954-1959 [67] Franke J, Heinen U, Lehr H, et al. First 3D dual modality phantom measurements of a hybrid MPI-MRI system using a resistive 12 channel MPI-MRI magnet design[C]// International Workshop on Magnetic Particle Imaging. Istanbul: IEEE, 2015:1-1. [68] Franke J, et al. System characterization of ahighly integrated preclinical hybrid MPI-MRI scanner [J]. IEEE Trans Med Imaging, 2016, 35 (9): 1993-2004. [69] Nishimoto K, Mimura A, Aoki M, et al. Application of magnetic particle imaging to pulmonary imaging using nebulized magnetic nanoparticles[J]. Open Journal of Medical Imaging, 2015, 5(2), 49-55. [70] Rahmer J, Halkola A, Gleich B, et al. First experimental evidence of the feasibility of multi-color magnetic particle imaging [J]. Physics in Medicine & Biology, 2015, 60(5):1775-1791. [71] Ferguson RM, Minard KR, Krishnan KM, Optimization of nanoparticle core size for magnetic particle imaging [J].J Magn Magn Mater, 2009,321(10): 1548-1551. [72] Croft LR, Goodwill PW, Conolly SM. Relaxation in X-space magnetic particle imaging[J].IEEE Trans Med Imaging, 2012. 31(12): 2335-2342. [73] Croft LR, Goodwill P, Ferguson M, et al. Relaxation in X-space magnetic particle imaging[M]//Megnetic Particle Imaging. Berlin: Springer, 2012:2335-2342. [74] Ferguson RM, Minard KR, Khandhar AP, et al. Optimizing magnetite nanoparticles for mass sensitivity in magnetic particle imaging.[J]. Medical Physics, 2011, 38(3):1619-1626. [75] Ferguson RM, Khandhar AP, Kemp S, et al. Magnetic particle imaging with tailored iron oxide nanoparticle tracers[J].IEEE Transactions on Medical Imaging,2015,34(5): 1077-1084. [76] Gleich B, Weizenecker J, Timminger H, et al. Fast MPI demonstrator with enlarged field of view[J]. Science,1963, 139 (355):411-416.