Assessment of Lead Shielding Protective Effect Based on Body Mass Index
Li Shuai1, Chao Yong2, Li Tianran2, Xu Qiming2, Li Qin1#*
1School of Life Science, Key Laboratory of Convergence Medical Engineering System and Healthcare Technology, The Ministry of Industry and Information Technology,Beijing Institute of Technology, Beijing 100081, China 2First Affiliated Hospital of PLA General Hospital, Beijing 100048, China
李帅, 晁勇, 李天然, 徐启明, 李勤. 基于身体质量指数的铅围脖防护效果评估[J]. 中国生物医学工程学报, 2018, 37(2): 252-256.
Li Shuai, Chao Yong, Li Tianran, Xu Qiming, Li Qin. Assessment of Lead Shielding Protective Effect Based on Body Mass Index. Chinese Journal of Biomedical Engineering, 2018, 37(2): 252-256.
[1] Weber N, Monnin P, Elandoy C, et al. A model-based approach of scatter dose contributions and efficiency of apron shielding for radiation protection in CT [J]. Physica Medica, 2015, 31(8):889-896. [2] Gyekye PK, Becker F, Mensah SY, et al. Optimisation of scatter radiation to staff during CT-fluoroscopy: Monte Carlo studies [J]. Radiation Protection Dosimetry, 2016, 170(1-4):393-397. [3] Su Yinping, Niu Haowei, Chen Junbo, et al. Radiation dose in the thyroid and the thyroid cancer risk attributable to CT scans for pediatric patients in one general hospital of China [J]. International Journal of Environmental Research & Public Health, 2014, 11(3):2793-2803. [4] Hammond WJ, Heaton TE, Farber BA, et al. Thyroid neoplasms: incidental findings on extent of disease evaluation CT for other pediatric malignancies [J]. Journal of Pediatric Surgery, 2017, 52(6):938-943. [5] Ngaile JE, Uiso CBS, Msaki P, et al. Use of lead shields for radiation protection of superficial organs in patients undergoing head CT examinations[J]. Radiation Protection Dosimetry, 2008, 130(4):490-498. [6] Hopper KD. Orbital, thyroid, and breast superficial radiation shielding for patients undergoing diagnostic CT [J]. Seminars in Ultrasound, CT, and MR, 2002, 23(5):423-427. [7] Iball GR, Kennedy EV, Brettle DS. Modelling the effect of lead and other materials for shielding of the fetus in CT pulmonary angiography [J]. British Journal of Radiology, 2008, 81(966):499-503. [8] 顾建华. 儿童X射线CT检査屏蔽防护方法与效果研究 [D]. 上海:复旦大学, 2014. [9] Hohl C, Mahnken AH, Klotz E, et al. Radiation dose reduction to the male gonads during MDCT: the effectiveness of a lead shield [J]. Ajr American Journal of Roentgenology, 2005, 184(1):128-130. [10] Smithbindman R, Wang Yifei, Yellennelson TR, et al. Predictors of CT radiation dose and their effect on patient care: A comprehensive analysis using automated data [J]. Radiology, 2017, 282(1):182-193. [11] Boos J, Meineke A, Rubbert C, et al. Cloud-based CT dose monitoring using the DICOM-structured report: Fully automated analysis in regard to national diagnostic reference levels [J]. Rofo Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin, 2016, 188(3):288-294. [12] Mccollough CH, Wang Jia, Berland LL. Bismuth shields for CT dose reduction: Do they help or hurt [J]. Journal of the American College of Radiology, JACR, 2011, 8(12):878-879. [13] Kalra MK, Maher MM, Toth TL, et al. Techniques and applications of automatic tube current modulation for CT [J]. Radiology, 2004, 233(3):649-657. [14] Mccollough CH, Bruesewitz MR, Jr KJ. CT dose reduction and dose management tools: Overview of available options [J]. Radiographics, 2006, 26(2):503-512. [15] 杨尚文, 何健, 杨献峰,等. ASiR算法结合自动管电流调制技术在胸部低剂量CT中的应用研究 [J]. 医学影像学杂志, 2012, 22(1):58-61. [16] 张志伟, 罗天友, 曾勇明,等. 自动管电流调制技术在颈部64层螺旋CT检查中的应用 [J]. 中国医学影像技术, 2009, 25(1):138-140.