Review of Normal Tissues Complication Probability Models
1 Department of Radiotherapy, Shandong Tumor Hospital & Institute, Jinan 250117, China
2 Key Laboratory of Radiation Oncology of Shandong Province, Jinan 250117, China
3 Laboratory of Image Science and Technology, Southeast University, Nanjing 210096, China
4 Laboratoire Traitement du Signal et de l’Image (INSERMU1099), Universitéde Rennes 1, Rennes 35510, France
Abstract:To predict the probability of radiotherapy complications, optimize radiotherapy plans and reveal the radiobiological characteristics by normal tissue complication probability (NTCP) models are becoming important issues in the radiation oncology field recently. All of them can be achieved by identifying the NTCP model parameters with clinical and followup data. In this work, six NTCP models from literatures, model identification and comparison methods were summarized; three improved NTCP models and some other complication predictive methods were introduced as well. Issues of NTCP in individual radiotherapy were discussed and proposed from the clinical application point of view.
[1]Emami B, Lyman J, Brown A, et al. Tolerance of normal tissue to therapeutic irradiation [J]. Int J Radiat Oncol Biol Phys, 1991, 21: 109-122.
[2]Marks LB, Yorke ED, Jackson A, et al. Use of normal tissue complication probability models in the clinic [J]. Int J Radiat Oncol Biol Phys, 2010, 76: S10-19.
[3]Tucker SL, Li M, Xu T, et al. Incorporating singlenucleotide polymorphisms into the Lyman model to improve prediction of radiation pneumonitis [J]. Int J Radiat Oncol Biol Phys, 2013, 85: 251-257.
[4]Strigari L, Pedicini P, D’Andrea M, et al. A new model for predicting acute mucosal toxicity in headandneck cancer patients undergoing radiotherapy with altered schedules [J]. Int J Radiat Oncol Biol Phys, 2012, 83: e697-e702.
[5]Gulliford SL, Partridge M, Sydes MR, et al. Parameters for the Lyman Kutcher Burman (LKB) model of Normal Tissue Complication Probability (NTCP) for specific rectal complications observed in clinical practise [J]. Radiother Oncol, 2012, 102: 347-351.
[6]Fellin F, Azzeroni R, Maggio A, et al. Helical tomotherapy and intensity modulated proton therapy in the treatment of dominant intraprostatic lesion: A treament planning comparison [J]. Radiother Oncol, 2013, 107(2):207-212.
[7]Amin NP, Miften M, Thornton D, et al. Effect of induction chemotherapy on estimated risk of radiation pneumonitis in bulky nonsmall cell lung cancer [J]. Med Dosim, 2013, 38: 320-326.
[8]De Sanctis V, Bolzan C, D’Arienzo M, et al. Intensity modulated radiotherapy in early stage Hodgkin lymphoma patients: is it better than three dimensional conformal radiotherapy? [J]. Radiat Oncol, 2012, 7: 129.
[9]Dawson LA, Normolle D, Balter JM, et al. Analysis of radiationinduced liver disease using the Lyman NTCP model [J]. Int J Radiat Oncol Biol Phys, 2002, 53: 810-821.
[10]Chapet O, Kong FM, Lee JS, et al. Normal tissue complication probability modeling for acute esophagitis in patients treated with conformal radiation therapy for nonsmall cell lung cancer [J]. Radiother Oncol, 2005, 77: 176-181.
[11]Fiorino C, Rancati T, Valdagni R. Predictive models of toxicity in external radiotherapy: dosimetric issues [J]. Cancer, 2009, 115: 3135-3140.
[12]Miah AB, Gulliford SL, Clark CH, et al. Doseresponse analysis of parotid gland function: What is the best measure of xerostomia? [J]. Radiother Oncol, 2013, 106: 341-345.
[13]徐志勇, 梁世雄, 朱冀, 等. 用Lyman NTCP模型分析原发性肝癌三维适形放疗引起的放射性肝病 [J]. 中华放射肿瘤学杂志, 2006, 15: 457-461.
[14]Zhu Jian, Zhang Zicheng, Li Baosheng, et al. Analysis of acute radiationinduced esophagitis in nonsmallcell lung cancer patients using the Lyman NTCP model [J]. Radiother Oncol, 2010, 97: 449-454.
[15]Lyman JT. Complication probability as assessed from dosevolume histograms [J]. Radiat Res Suppl, 1985,
8: S13-S19.
[16]Kutcher GJ, Burman C, Brewster L. Histogram reduction method for calculating complication probabilities for threedimensional treatment planning evaluations [J]. Int J Radiat Oncol Biol Phys, 1991, 21: 137-146.
[17]Kutcher GJ, Burman C. Calculation of complication probability factors for nonuniform normal tissue irradiation: the effective volume method [J]. Int J Radiat Oncol Biol Phys, 1989, 16: 1623-1630.
[18]Lyman JT, Wolbarst AB. Optimization of radiation therapy, IV: A dosevolume histogram reduction algorithm [J]. Int J Radiat Oncol Biol Phys, 1989, 17: 433-436.
[19]Moiseenko V, Battista J, Van Dyk J. Normal tissue complication probabilities: dependence on choice of biological model and dosevolume histogram reduction scheme [J]. Int J Radiat Oncol Biol Phys, 2000, 46: 983-993.
[20]Schultheiss TE, Orton CG, Peck RA. Models in radiotherapy: volume effects [J]. Med Phys, 1983, 10: 410-415.
[21]Kallman P, Agren A, Brahme A. Tumour and normal tissue responses to fractionated nonuniform dose delivery [J]. Int J Radiat Biol, 1992, 62: 249-262.
[22]Wolbarst AB, Chin LM, Svensson GK. Optimization of radiation therapy: integralresponse of a model biological system [J]. Int J Radiat Oncol Biol Phys, 1982, 8: 1761-1769.[23]Niemierko A, Goitein M. Modeling of normal tissue response to radiation: the critical volume model [J]. Int J Radiat Oncol Biol Phys, 1993, 25: 135-145.
[24]Jackson A, Kutcher GJ, Yorke ED. Probability of radiationinduced complications for normal tissues with parallel architecture subject to nonuniform irradiation [J]. Med Phys, 1993, 20: 613-625.
[25]Jackson A, Ten Haken RK, Robertson JM, et al. Analysis of clinical complication data for radiation hepatitis using a parallel architecture model [J]. Int J Radiat Oncol Biol Phys, 1995, 31: 883-891.
[26]Burman C, Kutcher GJ, Emami B, et al. Fitting of normal tissue tolerance data to an analytic function [J]. Int J Radiat Oncol Biol Phys, 1991, 21: 123-135.
[27]Hrdemark B, Liander A, Rehbinder H, et al. P3IMRT Biological optimization and EUD [EB/OL]. Pinnacle3 White Paper. www. edudoc.com/ebook/hardemark.html,2004/2013-05-11.
[28]Ospina J, Zhu Jian, Le Prise E, et al. Random forest are strong competitors of published NTCP models for rectal and bladder toxicity prediction[J]. Int J Radiat Oncol Biol Phys, 2012, 84: S387.
[29]Rancati T, Fiorino C, Gagliardi G, et al. Fitting late rectal bleeding data using different NTCP models: results from an Italian multicentric study (AIROPROS0101) [J]. Radiother Oncol, 2004, 73: 21-32.
[30]Seppenwoolde Y, Lebesque JV, de Jaeger K, et al. Comparing different NTCP models that predict the incidence of radiation pneumonitis. Normal tissue complication probability [J]. Int J Radiat Oncol Biol Phys, 2003, 55: 724-735.
[31]Douglas BG, Fowler JF. The effect of multiple small doses of x rays on skin reactions in the mouse and a basic interpretation [J]. Radiat Res, 1976, 66: 401-426.
[32]Thames HD, Jr Withers HR, Peters LJ, et al. Changes in early and late radiation responses with altered dose fractionation: implications for dosesurvival relationships [J]. Int J Radiat Oncol Biol Phys, 1982, 8: 219-226.
[33]Marzi S, Saracino B, Petrongari MG, et al. Modeling of alpha/beta for late rectal toxicity from a randomized phase II study: conventional versus hypofractionated scheme for localized prostate cancer [J]. J Exp Clin Cancer Res, 2009,
28: 117.
[34]Tucker SL, Thames HD, Michalski JM, et al. Estimation of alpha/beta for late rectal toxicity based on RTOG 94-06 [J]. Int J Radiat Oncol Biol Phys, 2011, 81: 600-605.
[35]Tucker SL, Liu HH, Liao Z, et al. Analysis of radiation pneumonitis risk using a generalized Lyman model [J]. Int J Radiat Oncol Biol Phys, 2008, 72: 568-574.
[36]Munley MT, Lo JY, Sibley GS, et al. A neural network to predict symptomatic lung injury [J]. Phys Med Biol, 1999, 44: 2241-2249.
[37]Su Mu, Miften M, Whiddon C, et al. An artificial neural network for predicting the incidence of radiation pneumonitis [J]. Med Phys, 2005, 32: 318-325.
[38]Thames HD, Zhang M, Tucker SL, et al. Cluster models of dosevolume effects [J]. Int J Radiat Oncol Biol Phys, 2004, 59: 1491-1504.
[39]El Naqa I, Bradley J, Blanco AI, et al. Multivariable modeling of radiotherapy outcomes, including dosevolume and clinical factors [J]. Int J Radiat Oncol Biol Phys, 2006, 64: 1275-1286.
[40]Valdagni R, Rancati T, Fiorino C. Predictive models of toxicity with external radiotherapy for prostate cancer: clinical issues [J]. Cancer, 2009, 115: 3141-3149.
[41]Deasy JO, El Naqa I. Imagebased modeling of normal tissue complication probability for radiation therapy [J]. Cancer Treat Res, 2008, 139: 215-256.
[42]Acosta O, Dowling J, Cazoulat G, et al. Atlas based segmentation and mapping of organs at risk from planning ct for the development of voxel\|wise predictive models of toxicity in prostate radiotherapy[M]//Prostate Cancer Imaging. Computer\|Aided Diagnosis, Prognosis, and Intervention. Berlin Heidelberg: Springer, 2010: 42-51.
[43]Allen Li X, Alber M, Deasy JO, et al. The use and QA of biologically related models for treatment planning: short report of the TG166 of the therapy physics committee of the AAPM [J]. Med Phys, 2012, 39: 1386-1409.