The Application of Body Area Communication Technology in Programming/Telemetry of CardiacPacemakers
Guo Binbin1, Huang Yanqi1, Yan Shengjie1, Wu Xiaomei1,2,3,4#*
1(Department of Biomedical Engineering, School of Biomedical Engineering and Technological Innovation, Fudan University, Shanghai 200438, China) 2(Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention(MICCAI) of Shanghai, Fudan University, Shanghai 200032,China) 3(Shanghai Engineering Research Centre of Assistive Devices, Shanghai 200093, China) 4(Yiwu Research Institute of Fudan University, Yiwu 322000, Zhejiang, China)
Abstract:Aimed to integrate key achievements of body area networks in programming/telemetry technology of implantable cardiac pacemakers,this article made a systematic review and multi-dimensional analysis approach. Firstly, we elaborated on the working principle of implantable cardiac pacemakers, particularly the programming/telemetry functions. Then, the development history of cardiac pacemaker programming/telemetry technology and sorts out the key technical threads in the development process were briefly reviewed. On this basis, this article conducted a comparative analysis of communication technologies including inductive coupling communication, current coupling communication, capacitive coupling communication, and microwave communication, to evaluate their core indicators such as transmission efficiency, biocompatibility, and electromagnetic safety in the programming/telemetry of cardiac pacemakers, and deeply explore the technical bottlenecks and potential solutions faced by each technology in clinical applications. Finally, a summary and comparative study of the common modulation and coding mechanisms of various communication standards were conducted from the perspective of information theory. In conclusion, this review was expected to provide a reference for the research on the programming/telemetry technology of implantable medical electronic devices represented by cardiac pacemakers.
作者简介: #中国生物医学工程学会会员(Member,Chinese Society of Biomedical Engineering)
引用本文:
郭彬彬, 黄彦淇, 鄢盛杰, 邬小玫. 体域通信技术在心脏起搏器程控/遥测中的应用进展[J]. 中国生物医学工程学报, 2025, 44(5): 591-603.
Guo Binbin, Huang Yanqi, Yan Shengjie, Wu Xiaomei. The Application of Body Area Communication Technology in Programming/Telemetry of CardiacPacemakers. Chinese Journal of Biomedical Engineering, 2025, 44(5): 591-603.
[1] 唐正径.心脏起博器及其工作原理[J].电子元件与材料,1983,(3):61-63. [2] 何丹.心跳的“指挥官”:起搏器的工作原理[J].人人健康,2024,(33):18-19. [3] McAdams E.Biomedical electrodes for biopotential monitoring and electrostimulation[M]//Bio-Medical CMOS ICs.Boston, MA:Springer, 2011:31-124. [4] Sutton R, Fisher JD, Linde C, et al.History of electrical therapy for the heart[J].European Heart Journal Supplements, 2007, 9(suppl I): I3-I10. [5] DeForge WF.Cardiac pacemakers: a basic review of the history and current technology[J].Journal of Veterinary Cardiology, 2019, 22: 40-50. [6] Aquilina O.A brief history of cardiac pacing[J].Images in Paediatric Cardiology, 2006, 8(2): 17. [7] Zoll P M.Resuscitation of the heart in ventricular standstill by external electric stimulation[J].New England Journal of Medicine, 1952, 247(20): 768-771. [8] Castillo C A, Berkovits B V, Castellanos Jr A, et al.Bifocal demand pacing[J].Chest, 1971, 59(4): 360-364. [9] Lüderitz B.Profiles in cardiac pacing and electrophysiology[M].Malden:Blackwell Futura Publishing Inc., 2005. [10] Haydock P, Camm A J.History and evolution of pacing and devices[J].Heart, 2022, 108(10): 794-799. [11] Ripart A.Holter and telemetry in pacemakers and ICDs: new developments[M]//Cardiac Pacing and Electrophysiology: A bridge to the 21st Century.Dordrecht: Springer Netherlands, 1994: 333-346. [12] Freedman B, Boriani G, Glotzer TV, et al.Management of atrial high-rate episodes detected by cardiac implanted electronic devices[J].Nature Reviews Cardiology, 2017, 14(12): 701-714. [13] 中华医学会心电生理和起搏分会,中国医师协会心律学专业委员会.心血管植入型电子器械术后随访的专家共识(2020)[J].中华心律失常学杂志, 2020,24(6):532-544. [14] 王一枫,朱泽璟,邬小玫,等.心脏起搏器程控与遥测系统的研究[J].生物医学工程学进展,2011,32(1):1-5. [15] 中国医师协会心律学专业委员会,中华医学会心电生理和起搏分会.无导线起搏器临床应用中国专家共识(2022)[J].中华心律失常学杂志,2022,26(3):263-271. [16] Mandal S, Sarpeshkar R.Power-efficient impedance-modulation wireless data links for biomedical implants[J].IEEE Transactions on Biomedical Circuits and Systems, 2008, 2(4): 301-315. [17] Ghovanloo M, Atluri S.A wide-band power-efficient inductive wireless link for implantable microelectronic devices using multiple carriers[J].IEEE Transactions on Circuits and Systems I: Regular Papers, 2007, 54(10): 2211-2221. [18] 汪啸尘,张广浩,霍小林.人体通信技术研究进展[J].中国生物医学工程学报,2015,34(3):345-353. [19] Zimmerman TG.Personal area networks: Near-field intrabody communication[J].IBM Systems Journal, 1996, 35(3.4): 609-617. [20] Yu Shengbao, Wei Yiming, Zhang Jialin, et al.Noise optimization design of frequency-domain air-core sensor based on capacitor tuning technology[J].Sensors, 2019, 20(1): 194. [21] Ko WH, Liang SP, Fung CDF.Design of radio-frequency powered coils for implant instruments[J].Medical and Biological Engineering and Computing, 1977, 15: 634-640. [22] Donaldson NN, Perkins TA.Analysis of resonant coupled coils in the design of radio frequency transcutaneous links[J].Medical and Biological Engineering and Computing, 1983, 21: 612-627. [23] Gao Weipeng, Li Hongchang, Tang Yi.Three-dimensional geometric optimization of WPT coils for coupling coefficient maximization[J].Journal of Power Electronics, 2022, 22(5): 883-891. [24] Troyk PR, Schwan MAK.Closed-loop class E transcutaneous power and data link for microimplants[J].IEEE Transactions on Biomedical Engineering, 1992, 39(6): 589-599. [25] Ziaie B, Nardin MD, Coghlan AR, et al.A single-channel implantable microstimulator for functional neuromuscular stimulation[J].IEEE Transactions on Biomedical Engineering, 1997, 44(10): 909-920. [26] Hamici Z, Itti R, Champier J.A high-efficiency power and data transmission system for biomedical implanted electronic devices[J].Measurement Science and Technology, 1996, 7(2): 192-201. [27] Liu Wenliang, Deng Jingya, Yi Chupeng, et al.Class-F-1 GaN power amplifier integrated active antenna with increased efficiency for wireless power transmission applications[J].IEEE Internet of Things Journal, 2024, 11(10): 8779-8789. [28] Hwang T, Azadet K, Wilson RS, et al.Characterization of class-F power amplifier with wide amplitude and phase bandwidth for outphasing architecture[J].IEEE Microwave and Wireless Components Letters, 2014, 24(3): 188-190. [29] Kim HJ, Kim YJ, Kim JR.An integrated LTCC inductor embedding NiZn ferrite[J].IEEE Transactions on Magnetics, 2006, 42(10): 2840-2842. [30] Hachisuka K, Nakata A, Takeda T, et al.Development and performance analysis of an intra-body communication device[C]//Transducersˊ03.12th International Conference on Solid-State Sensors, Actuators and Microsystems.Digest of Technical Papers.Boston: IEEE, 2003: 1722-1725. [31] Gao Yueming, Wu Zhumei, Pun Siohang, et al.A novel field-circuit FEM modeling and channel gain estimation for galvanic coupling real IBC measurements[J].Sensors, 2016, 16(4): 471. [32] Lindsey DP, McKee EL, Hull ML, et al.A new technique for transmission of signals from implantable transducers[J].IEEE Transactions on Biomedical Engineering, 1998, 45(5): 614-619. [33] Wegmüller MS.Intra-body communication for biomedical sensor networks[D].Zurich:ETH Zurich, 2007. [34] Song Yong, Zhang Kai, Hao Qun, et al.A finite-element simulation of galvanic coupling intra-body communication based on the whole human body[J].Sensors, 2012, 12(10): 13567-13582. [35] 高跃明,潘少恒,麦炳源,等.电耦合型人体通信收发器的设计与实现[J].电子技术应用,2011,37(12):90-93,97. [36] 陈志英,张志强,龚赞.采用电场分割法的电流耦合人体通信等效电路模型[J].武汉大学学报(工学版),2022,55(1):71-77. [37] Kibret B, Seyedi MH, Lai DTH, et al.Investigation of galvanic-coupled intrabody communication using the human body circuit model[J].IEEE Journal of Biomedical and Health Informatics, 2014, 18(4): 1196-1206. [38] Callejon MA, Reina-Tosina J, Naranjo-Hernández D, et al.Galvanic coupling transmission in intrabody communication: A finite element approach[J].IEEE Transactions on Biomedical Engineering, 2013, 61(3): 775-783. [39] Pun Siohang, Gao Yueming, Mak Pengun, et al.Quasi-static modeling of human limb for intra-body communications with experiments[J].IEEE Transactions on Information Technology in Biomedicine, 2011, 15(6): 870-876. [40] Hannan MA, Abbas SM, Samad SA, et al.Modulation techniques for biomedical implanted devices and their challenges[J].Sensors, 2011, 12(1): 297-319. [41] 高跃明,潘少恒,麦炳源,等.电流耦合型人体通信准静态建模与收发器设计[J].电子测量与仪器学报,2012,26(8):732-737. [42] FilipovićL, Herceg M, VlaovićJ, et al.Energy-efficient data transmission for capacitive-coupled human body communication systems[J].IEEE Sensors Letters, 2021, 5(12): 1-4. [43] Bereuter L, Kuenzle T, Niederhauser T, et al.Fundamental characterization of conductive intracardiac communication for leadless multisite pacemaker systems[J].IEEE Transactions on Biomedical Circuits and Systems, 2018, 13(1): 237-247. [44] Maldari M, Albatat M, Bergsland J, et al.Wide frequency characterization of intra-body communication for leadless pacemakers[J].IEEE Transactions on Biomedical Engineering, 2020, 67(11): 3223-3233. [45] Cantillon DJ, Gambhir A, Banker R, et al.Wireless communication between paired leadless pacemakers for dual-chamber synchrony[J].Circulation: Arrhythmia and Electrophysiology, 2022, 15(7): e010909. [46] 张广浩,江凌彤,吴昌哲,等.神经系统感应式电刺激方法的研究[J].电工电能新技术,2009,28(2):12-15. [47] 李滚.生物组织电学特性及其在电磁场曝露后的变化研究[D].成都:电子科技大学,2012. [48] Lin JC.A new IEEE standard for safety levels with respect to human exposure to radio-frequency radiation[J].IEEE Antennas and Propagation Magazine, 2006, 48(1): 157-159. [49] Bailey WH, Bodemann R, Bushberg J, et al.Synopsis of IEEE Std C95.1TM-2019 “IEEE standard for safety levels with respect to human exposure to electric, magnetic, and electromagnetic fields, 0 Hz to 300 GHz”[J].IEEE Access, 2019, 7: 171346-171356. [50] International Commission on Non-Ionizing Radiation Protection.ICNIRP statement on the “Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz)”[J].Health Physics, 2009, 97(3): 257-258. [51] Thom GA.H.323: the multimedia communications standard for local area networks[J].IEEE Communications Magazine, 2002, 34(12): 52-56. [52] Chadha SS, Singh M, Pardeshi SK.Bluetooth technology: principle, applications and current status[J].Int J Comput Sci Commun, 2013, 4(2): 16-30. [53] Koulouras G, Katsoulis S, Zantalis F.Evolution of bluetooth technology: BLE in the IoT ecosystem[J].Sensors (Basel, Switzerland), 2025, 25(4): 996. [54] Faisal F, Zada M, Ejaz A, et al.A miniaturized dual-band implantable antenna system for medical applications[J].IEEE Transactions on Antennas and Propagation, 2019, 68(2): 1161-1165. [55] Singh A, Mitra D, Mandal B, et al.A review of electromagnetic sensing for healthcare applications[J].AEU-International Journal of Electronics and Communications, 2023, 171: 154873. [56] Dinesh V, Vijayalakshmi J, Pagalavan V, et al.Metamaterial loaded microstrip patch antenna for biomedical applications[C]//2022 13th International Conference on Computing Communication and Networking Technologies (ICCCNT).Kharagpur: IEEE, 2022: 1-5. [57] Faisal F, Zada M, Ejaz A, et al.A miniaturized dual-band implantable antenna system for medical applications[J].IEEE Transactions on Antennas and Propagation, 2019, 68(2): 1161-1165. [58] Faisal F, Zada M, Yoo H, et al.An ultra-miniaturized antenna with ultra-wide bandwidth for future cardiac leadless pacemaker[J].IEEE Transactions on Antennas and Propagation, 2022, 70(7): 5923-5928. [59] Sharma D, Kanaujia BK, Kaim V, et al.Design and implementation of compact dual-band conformal antenna for leadless cardiac pacemaker system[J].Scientific Reports, 2022, 12(1): 3165. [60] Sharma D, Tiwari RN, Kanaujia BK, et al.Dual-band MIMO antenna data telemetry for dual-chamber leadless cardiac pacing on Internet of Things environment[J].IEEE Internet of Things Journal, 2023, 11(5): 9072-9085. [61] Noormohammadi R, Khaleghi A, Bergsland J, et al.Conductive backscatter communication for dual-chamber leadless pacemakers[J].IEEE Transactions on Microwave Theory and Techniques, 2022, 70(4): 2442-2450. [62] 王领.无线心电监护系统的研究与实现[D].哈尔滨:哈尔滨工业大学, 2012. [63] Cho N, Yoo J, Song SJ, et al.The human body characteristics as a signal transmission medium for intrabody communication[J].IEEE Transactions on Microwave Theory and Techniques, 2007, 55(5): 1080-1086. [64] Mao Jingna, Yang Huazhong, Zhao Bo.An investigation on ground electrodes of capacitive coupling human body communication[J].IEEE Transactions on Biomedical Circuits and Systems, 2017, 11(4): 910-919. [65] Li Maoyuan, Song Yong, Hou Yongtao, et al.Comparable investigation of characteristics for implant intra-body communication based on galvanic and capacitive coupling[J].IEEE Transactions on Biomedical Circuits and Systems, 2019, 13(6): 1747-1758. [66] Wang Wencheng, Nie Zedong, Guan Feng, et al.Experimental studies on human body communication characteristics based upon capacitive coupling[C]//2011 International Conference on Body Sensor Networks.Dallas: IEEE, 2011: 180-185. [67] 崔强强.基于容性电场耦合的体域通信研究[D].武汉:华中科技大学,2015. [68] 朱小奇.无线体域网中可穿戴天线和容性耦合人体通信研究[D].南京:南京理工大学,2018. [69] 曹妮妮,金捷,孙卫新,等.植入式装置与体外程控装置数据交换技术的进展[J].国外医学.生物医学工程分册,2002(4):156-160. [70] Yu Hong, Bashirullah R.A low power ASK clock and data recovery circuit for wireless implantable electronics[C]//IEEE Custom Integrated Circuits Conference 2006.San Jose: IEEE, 2006: 249-252. [71] 王伟明,马伯志,郝红伟,等.用于植入式医疗仪器的无线通信系统研究[J].中国生物医学工程学报,2009,28(3):408-414. [72] Guo Chong, Zhang Hong, Ma Zhouyi, et al.An inductive wireless telemetry circuit with OOK modulation for implantable cardiac pacemakers[C]//2015 IEEE 11th International Conference on ASIC (ASICON).Chengdu: IEEE, 2015: 1-4. [73] Tang Z, Smith B, Schild H, et al.Data transmission from an implantable biotelemeter by load-shift keying using circuit configuration modulator[J].IEEE Transactions on Biomedical Engineering, 1995, 42(5): 524-528. [74] Gruenwald W, Jansen D.A digital low frequency transceiver for biomedical implants with enclosed titanium housing[C]//2012 International Conference on Signals and Electronic Systems (ICSES).Kraków: IEEE, 2012: 1-4. [75] 杨洋,张瑞智,张杰,等.植入式医疗装置的无线通信和能量收集电路[J].西安交通大学学报,2018,52(7):160-166. [76] Bose P, Khaleghi A, Mahmood S, et al.Evaluation of data telemetry for future leadless cardiac pacemaker[J].IEEE Access, 2019, 7: 157933-157945. [77] Hannan MA, Abbas SM, Samad SA, et al.Modulation techniques for biomedical implanted devices and their challenges[J].Sensors, 2011, 12(1): 297-319. [78] Seyedi MH, Kibret B, Lai DTH, et al.A survey on intrabody communications for body area network applications[J].IEEE Transactions on Biomedical Engineering, 2013, 60(8): 2067-2079. [79] Gerez SH.Implementation of digital signal processing: some background on GFSK modulation[J].Enschede: University Twente, 2013. [80] Zhao Jianfeng, Chen Ximei, Liang Bodong, et al.A review on human body communication: Signal propagation model, communication performance, and experimental issues[J].Wireless Communications and Mobile Computing, 2017, 2017(1): 5842310. [81] Wegmueller M S, Kuhn A, Froehlich J, et al.An attempt to model the human body as a communication channel[J].IEEE Transactions on Biomedical Engineering, 2007, 54(10): 1851-1857. [82] Handa T, Shoji S, Ike S, et al.A very low-power consumption wireless ECG monitoring system using body as a signal transmission medium[C]//Proceedings of International Solid State Sensors and Actuators Conference (Transducersˊ 97).Chicago: IEEE, 1997, 2: 1003-1006. [83] Oberle M.Low power systems-on-chip for biomedical applications[D].Zurich: ETH Zurich, 2002. [84] Hachisuka K, Nakata A, Takeda T, et al.Development and performance analysis of an intra-body communication device[C]//TRANSDUCERSˊ03.12th International Conference on Solid-State Sensors, Actuators and Microsystems.Digest of Technical Papers (Cat.No.03TH8664).Boston:IEEE, 2003, 2: 1722-1725. [85] Wegmueller MS, Huclova S, Froe hlich J, et al.Galvanic coupling enabling wireless implant communications[J].IEEE Transactions on Instrumentation and Measurement, 2009, 58(8): 2618-2625. [86] Vizziello A, Savazzi P, Magenes G.Electromyography data transmission via galvanic coupling intra-body communication link[C]//Proceedings of the Eighth Annual ACM International Conference on Nanoscale Computing and Communication.New York: ACM, 2021: 1-7. [87] Li Jiawen, Chen Ximei, Sekar BD, et al.Channel characteristics analysis of galvanic coupling intra-body communication[J].IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology, 2022, 6(3): 364-372. [88] Post ER, Reynolds M, Gray M, et al.Intrabody buses for data and power[C]//First International Symposium on Wearable Computers.Cambridge: IEEE, 1997: 52-55. [89] Partridge K, Dahlquist B, Veiseh A, et al.Empirical measurements of intrabody communication performance under varied physical configurations[C]//Proceedings of the 14th annual ACM Symposium on User Interface Software and Technology.Orlando: ACM, 2001: 183-190. [90] Hou Yongtao, Song Yong, Li Maoyuan, et al.Design of image transmission system of intra-body communication based on capacitive coupling[C]//2019 IEEE International Conference on Signal, Information and Data Processing (ICSIDP).Chongqing: IEEE, 2019: 1-4. [91] Zhu Hongjie, Xu Ruoyu, Yuan Jie.High speed intra-body communication for personal health care[C]//2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.Minneapolis: IEEE, 2009: 709-712. [92] FilipovićL, Herceg M, VlaovićJ, et al.Energy-efficient data transmission for capacitive-coupled human body communication systems[J].IEEE Sensors Letters, 2021, 5(12): 1-4. [93] Seyedi MH, Cai Z, Lai DTH, et al.An energy-efficient pulse position modulation transmitter for galvanic intrabody communications[C]//2014 4th International Conference on Wireless Mobile Communication and Healthcare-Transforming Healthcare Through Innovations in Mobile and Wireless Technologies (MOBIHEALTH).Athens: IEEE, 2014: 192-195. [94] Kurs A, Karalis A, Moffatt R, et al.Wireless power transfer via strongly coupled magnetic resonances[J].Science, 2007, 317(5834): 83-86. [95] Rappaport TS, Sun S, Mayzus R, et al.Millimeter wave mobile communications for 5G cellular: it will work![J].IEEE Access, 2013, 1: 335-349. [96] Liu Zhou, Hu Yiran, Qu Xuecheng, et al.A self-powered intracardiac pacemaker in swine model[J].Nature Communications, 2024, 15(1): 507. [97] Ouyang H, Liu Z, Li N, et al.Symbiotic cardiac pacemaker[J].Nature Communications, 2019, 10(1): 1821.