Abstract:In order to clarify the influence of the sutureless anastomotic devices on hemodynamic factors in proximal anastomosis in coronary artery bypass graft (CABG), suturing and sutureless anastomotic models were constructed by software Solidworks. The pulsatile flows in the two models were simulated and analyzed with finite element method and software Fluent 6.3. The distribution of velocity, second flow, pressure and wall shear stress were calculated with a function of time in a cardiac cycle. Results showed that using the sutureless anastomotic devices enlarged the area of low velocity, which was 0.2 m/s higher than suturing model, while increased the magnitude of the velocity in grafts. The wall shear stress in anastomosis ranged from 0 to 50 Pa and changed dramatically, besides, stress concentration was more serious in sutureless anastomotic model, which would lead to the activation of the platelets and intimal hyperplasia. Optimal design of sutureless anastomotic devices is necessary for the improvement of CABG patency rates.
高进涛 王国栋 肖聚亮*. 缝合式和机械吻合式搭桥模型的血流动力学数值模拟[J]. 中国生物医学工程学报, 2012, 31(6): 866-874.
GAO Jin Tao WANG Guo Dong XIAO Ju Liang*. Numerical Simulation of Hemodynamics in Suturing and Sutureless Anastomotic Models. journal1, 2012, 31(6): 866-874.
[1]Riess FC, Helmold H, Hilfer I,et al. Clinical experience with the CorLink device for proximal anastomosis of the saphenous vein to the aorta: A clinical, prospective, and randomized study[J]. The Heart Surgery Forum,2002,5(4):345-353.
[2]Sun Anqiang, Fan Yubo, Deng Xiaoyan, et al. Hemodynamic performance of a sutureless anastomosis device (the Graft Connector): a numerical study[J]. Int J Artif Organs, 2010,33(6):392-398.
[3]Dohmen G, Hatama N, Goetzenich A, et al. PASPort clampless proximal anastomotic device for coronary bypass surgery in porcelain aorta[J]. European Journal of Cardiothoracic Surgery, 2011,39(1):49-52.
[4]Gummert JF, Opfermann U, Jacobs S, et al. Anastomotic devices for coronary artery bypass grafting: Technological options and potential pitfalls[J].Computers in Biology and edicine,2007,37(10):1384-1393.
[5]Zhang JM, Chua LP, Ghista DN, et al. Numerical investigation and identification of susceptible sites of atherosclerotic lesion formation in a complete coronary artery bypass model[J]. Med Biol Eng Comput, 2008,46(7): 689-699.
[6]乔爱科,刘友军.股动脉双路搭桥的血流动力学仿真[J].中国生物医学工程学报,2006,25(2):211-218.
[7]Milner JS, Moore JA, Rutt BK, et al. Hemodynamic of human carotid artery bifurcations: computational study with models reconstructured from magnetic resonance imagining of normal subjects[J]. Journal of Vascular Surgery,1998,281):143-156.
[8]Shaik E, Hoffmann KA, Dietiker JF. Numerical simulations of pulsatile NonNewtonian flow in an endtoside anastomosis model[J]. Simulation Modeling Practice and Theory, 2008,16(9):1123-1135.
[9]Chua LP, Zhang JM, Yu SC, et al. Numerical study on the pulsatile flow characteristics of proximal anastomotic model[J]. Proc Inst Mech Eng, 2005,219(5):361-379.
[10]Chua LP, Ji Wenfa, Zhou Tongming. In vitro study on the steady flow characteristics of proximal anastomotic models[J]. International Communications in Heat and Mass Transfer, 2005,32(3-4):464-472.
[11]Redaelli A, Maisano F, Ligorio G, et al. Flow dynamics of the St Jude Medical Symmetry aortic connector vein graft anastomosis do not contribute to the risk of acute thrombosis [J]. Journal of Thoracic and Cardiovascular Surgery, 2004, 128(1):117-123.
[12]杨俊勇.心血管系统(主动脉弓)血液流场计算[D].杭州:浙江理工大学,2008.
[13]林亚华,景在平,赵志清,等.人胸主动脉血液脉动流的三维数值分析[J].第二军医大学学报,2006,27(8):867-875.
[14]李言芝. B型主动脉夹层血液流动数值模拟分析[D]. 兰州:兰州理工大学,2011.
[15]Chua LP, Zhang JM, Zhou TM. Numerical study of a complete anastomosis model for the coronary artery bypass[J].Heat and Mass Tranf, 2005,32(3):473-482.
[16]邱霖,岑人经.有锥度角的主动脉弓血液脉动流数值分析[J].医用生物力学,2004,19(2):74-78.
[17]刘有军,乔爱科,黄伟.冠状动脉移植管的血流动力学数值模拟[J].中国生物医学工程学报,2004,23(4):370-377.
[18]叶显华,徐鹏,王宁夫,等.高血压对冠心病血小板活化作用的影响[J].心脑血管病防治,2011,11(1):27-28.
[19]乔爱科,刘有军,李晓阳. 股动脉对称搭桥术的数值分析[J].北京工业大学学报,2006,32(4):363-36.
[20]姜宗来. 生物力学:我国生物力学研究现状与展望[J]. 中国生物医学工程学报,2011, 30(2):161-168.