[1]Haub C. 2014 world populationdata sheet [EB/OL]. http://www.prb.org/pdf14/2014worldpopulationdatasheet_eng.pdf, 2014-08/2014-12-29.
[2]Hao Y, Foster R. Wireless body sensor networks for healthmonitoring applications [J]. Physiol Meas, 2008, 29(11): R27-R56.
[3]Darwish A, Hassanien AE. Wearable and implantable wireless sensor network solutions for healthcare monitoring [J]. SensorsBasel, 2011, 11(6): 5561-5595.
[4]IEEE 8021562012, IEEE Standard for Local and Metropolitan Area Networks Part 156: Wireless Body Area Networks [S]
[5]Baldus H, Corroy S, Fazzi A, et al. Humancentric connectivity enabled by bodycoupled communications [J]. IEEE Commun Mag, 2009, 47(6): 172-178.
[6]Seyedi M, Kibret B, Lai DTH, et al. A survey on intrabody communications for body area network applications [J]. IEEE Trans Biomed Eng, 2013, 60(8): 2067-2079.
[7]Gabriel S, Lau RW, Gabriel C. The dielectric properties of biological tissues.2. Measurements in the frequency range 10 Hz to 20 GHz [J]. Phys Med Biol, 1996, 41(11): 2251-2269.
[8]Lucev Z, Krois I, Cifrek M. A capacitive intrabody communication channel from 100 kHz to 100 MHz [J]. IEEE Trans Instrum Meas, 2012, 61(12): 3280-3289.
[9]Hachisuka K, Takeda T, Terauchi Y, et al. Intrabody data transmission for the personal area network [J]. Microsyst Technol, 2005, 11(8-10): 1020-1027.
[10]Callejon MA, NaranjoHernandez D, ReinaTosina J, et al. A comprehensive study into intrabody communication measurements [J]. IEEE Trans Instrum Meas, 2013, 62(9): 2446-2455.
[11]Zimmerman TG. Personal area networks (PAN): nearfield intrabody communication [D]. Cambridge: Massachusetts Institute of Technology, 1995.
[12]Handa T, Shoji S, Ike S, et al. A very lowpower consumption wireless ECG monitoring system using body as a signal transmission medium [C] //Digest of Technical Papers of 1997 International Conference on SolidState Sensors and Actuators. Chicago: IEEE, 1997: 1003-1006.
[13]Hachisuka K, Nakata A, Takeda T, et al. Development of wearable intrabody communication devices [J]. Sensor and Actuat APhys, 2003, 105(1): 109-115.
[14]Cho H, Bae J, Yoo HJ. A 375 mu W body channel communication wakeup receiver with injectionlocking ring oscillator for wireless body area network [J]. IEEE Trans CircuitsI, 2013, 60(5): 1200-1208.
[15]Post ER, Reynolds M, Gray M, et al. Intrabody buses for data and power [C] //Digest of Papers of First International Symposium on Wearable Computers. Cambridge: IEEE Computer Soc Press, 1997: 52-55.
[16]Partridge K, Dahlquist B, Veiseh A, et al. Empirical measurements of intrabody communication performance under varied physical configurations [C] //Marks J, Mynatt E, eds. Proceedings of the 14th Annual ACM Symposium on User Interface Software and Technology. Orlando: ACM, 2001: 183-190.
[17]Shinagawa M, Fukumoto M, Ochiai K, et al. A nearfieldsensing transceiver for intrabody communication based on the electrooptic effect [C] //Proceedings of the 20th IEEE Instrumentation and Measurement Technology Conference. Vail: IEEE, 2003: 296-301.
[18]Cho N, Yoo J, Song SJ, et al. The human body characteristics as a signal transmission medium for intrabody communication [J]. IEEE Trans Microw Theory, 2007, 55(5): 1080-1086.
[19]Fujii K, Takahashi M, Ito K. Electric field distributions of wearable devices using the human body as a transmission channel [J]. IEEE Trans Antenn Propag, 2007, 55(7): 2080-2087.
[20]Xu Ruoyu, Zhu Hongjie, Yuan Jie. Electricfield intrabody communication channel modeling with finiteelement method [J]. IEEE Trans Biomed Eng, 2011, 58〖STBZ〗(3): 705-712.
[21]Song Yong, Zhang Kai, Hao Qun, et al. Modeling and characterization of the electrostatic coupling intrabody communication based on MachZehnder electrooptical modulation [J]. Opt Express, 2012, 〖STHZ〗20〖STBZ〗(12): 13488-13500.
[22]张凯, 宋勇, 郝群, 等. 基于MZ电光调制的人体通信温度与频率特性分析 [J]. 北京理工大学学报, 2014, 34(08): 853-857.
[23]Kulkarni VV, Lee J, Zhou J, et al. A referenceless injectionlocked clockrecovery scheme for multilevelsignalingbased wideband BCC receivers [J]. IEEE Trans Microw Theory, 2014, 62(9): 1856-1866.
[24]Hachisuka K, Terauchi Y, Kishi Y, et al. Simplified circuit modeling and fabrication of intrabody communication devices [J]. Sensor Actuat APhy, 2006, 130-131(10): 322-330.
[25]Wegmueller M, Lehner A, Froehlich J, et al. Measurement system for the characterization of the human body as a communication channel at low frequency [C]// Proceedings of 27th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Shanghai: IEEE, 2005: 3502-3505.
[26]Wegmueller MS, Kuhn A, Froehlich J, et al. An attempt to model the human body as a communication channel [J]. IEEE Trans Biomed Eng, 2007, 54(10): 1851-1857.
[27]Wegmueller MS, Oberle M, Felber N, et al. Signal transmission by galvanic coupling through the human body [J]. IEEE Trans Instrum Meas, 2010, 59(4): 963-969.
[28]Song Yong, Hao Qun, Zhang Kai, et al. The simulation method of the galvanic coupling intrabody communication with different signal transmission paths [J]. IEEE Trans Instrum Meas, 2011, 60(4): 1257-1266.
[29]Callejon MA, ReinaTosina J, NaranjoHernandez D, et al. Galvanic coupling transmission in intrabody communication: a finite element approach [J]. IEEE Trans Biomed Eng, 2014, 61(3): 775-783.
[30]Kibret B, Seyedi M, Lai DTH, et al. Investigation of galvaniccoupled intrabody communication using the human body circuit model [J]. IEEE J Biomed Health, 2014, 18(4): 1196-1206.
[31]Xu Ruoyu, Ng WC, Zhu Hongjie, et al. Equation environment coupling and interference on the electricfield intrabody communication channel [J]. IEEE Trans Biomed Eng, 2012, 59(7): 2051-2059.
[32]Chen Ximei, Mak PU, Pun SH, et al. Signal transmission through human muscle for implantable medical devices using galvanic intrabody communication technique [C]//Proceedings of 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. San Diego: IEEE, 2012: 1651-1654.
[33]Bae J, Song K, Lee H, et al. A 024nJ/b wireless bodyareanetwork transceiver with scalable doubleFSK modulation [J]. IEEE J SolidSt Circ, 2012, 47(1): 310-322.
[34]Cavallari R, Martelli F, Rosini R, et al. A survey on wireless body area networks: technologies and design challenges [J]. IEEE Commun Surv Tut, 2014, 16(3): 1635-1657.
[35]Matsushita N, Tajima S, Ayatsuka Y, et al. Wearable key: device for personalizing nearby environment [C] //Digest of Papers of Fourth International Symposium on Wearable Computers. Atlanta: IEEE Computer Soc, 2000: 119-126.
[36]Kado Y. Humanarea networking technology as a universal interfacecommunications through natural human actions: touching, holding, stepping [C] //Digest of Technical Papers of 2009 Symposium on VLSI Circuits. Kyoto: Japan Society Applied Physics, 2009: 102-105.
[37]宋勇, 郝群, 张凯. 人体通信技术及军事应用 [J]. 国防科技, 2013, 34(06): 24-27+36.
[38]冷腾飞, 聂泽东, 王磊. 人体通信信道测试系统的研究与实现 [J]. 传感器与微系统, 2012, 31(11): 17-19,23.
[39]管峰, 聂泽东, 王磊. 一种应用在人体传感器网络的低功耗VCO [J]. 传感器与微系统, 2012, 31(12): 91-93.
[40]Wegmueller MS, Huclova S, Froehlich J, et al. Galvanic coupling enabling wireless implant communications [J]. IEEE Trans Instrum Meas, 2009, 58(8): 2618-2625.
[41]Zhang Kai, Hao Qun, Song Yong, et al. Modeling and characterization of the implant intrabody communication based on capacitive coupling using a transfer function method [J]. SensorsBasel, 2014, 14(1): 1740-1756.
[42]Shiba K, Enoki N. Capacitivecouplingbased information transmission system for implantable devices: investigation of transmission mechanism [J]. IEEE Trans Biomed Circ S, 2013, 7(5): 674-681.
[43]Sasagawa K, Ishii Y, Yokota S, et al. Implantable image sensor based on intrabrain image transmission [C] //35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Osaka: IEEE, 2013: 1863-1866.
[44]Hayami H, Ishii Y, Sasagawa K, et al. Body channel digital pulse transmission for biometric measurement by fully implantable CMOS image sensor [C] //Proceedings of 2014 IEEE International Meeting for Future of Electron Devices. Kyoto: IEEE, 2014: 1-2.
[45]Anderson GS, Sodini CG. Body coupled communication: the channel and implantable sensors [C] //2013 IEEE International Conference on Body Sensor Networks. Cambridge: IEEE, 2013: 1-5.
[46]益和, 张双, 秦雨萍, 等. 植入式人体通信技术发展与未来 [J]. 中国科技论文, 2014, 9(01): 16-23.
[47]Tang Zhide, Sclabassi RJ, Sun Caixin, et al. Transcutaneous battery recharging by volume conduction and its circuit modeling [C] //Proceedings of 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. New York: IEEE, 2006: 3070-3073.
[48]Hackworth SA, Sun M, Sclabassi RJ. A prototype volume conduction platform for implantable devices [C] //Proceedings of 33rd Annual Northeast Bioengineering Conference. Long Isl: IEEE, 2007: 124-125.
[49]Sodagar AM, Amiri P. Capacitive coupling for power and data telemetry to implantable biomedical microsystems [C] //Proceedings of 4th International IEEE/EMBS Conference on Neural Engineering. Antalya: IEEE, 2009: 404-407.
[50]AlKalbani AI, Yuce MR, Redoute JM. A biosafety comparison between capacitive and inductive coupling in biomedical implants [J]. IEEE Antenn Wirel Pr, 2014, 13: 1168-1171.
[51]Ogasawara T, Sasaki A, Fujii K, et al. Human body communication based on magnetic coupling [J]. IEEE Trans Antenn Propag, 2014, 62(2): 804-813. |