|
|
Research Progress in Study of Tissue Engineering Scaffolds and their Pore Morphologies by Supercritical CO2 Foaming Technology |
1 College of Chemical Engineering Department of Bioengineering and Technology, Huaqiao University, Xiamen 361021, China
2 Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, China |
|
|
Abstract As a carrier for the cell growth, tissue engineering scaffolds play important roles in the development of tissueengineered tissue. Conventional methods have been widely studied in manufacture of threedimension scaffolds. However, there are still some obstacles, such as the complication in process, removing organic solvents completely and maintaining the bioactivity of biomolecules loaded. Due to its environmentfriendship and high diffusion rate, the supercritical carbon dioxide (scCO2) technology, particularly the supercritical foaming process, has been widely exploited for producing tissue engineering scaffolds. The pore morphologies of the resulting scaffolds are largely dependent on physical and chemical parameters including the chemical composition, porogen and processing parameters. This article mainly reviews the development of tissue engineering scaffolds and the study of their pore morphologies by supercritical CO2 foaming technology. Advices regarding existing problems and prospective research are also proposed.
|
|
|
|
|
[1]Jang JH, Shea LD. Controllable delivery of nonviral DNA from porous scaffolds [J]. J Control Release, 2003, 86(1): 157-168.
[2]Mikos AG, Yuan Bao, Cima LG, et al. Preparation of poly(glycolic acid) bonded fiber structures for cell attachment and transplantation [J]. J Biomed Mater Res, 1993, 27(2): 183-189.
[3]Hutmacher DW. Scaffolds in tissue engineering bone and cartilage [J]. Biomaterials, 2000, 21(24): 2529-2543.
[4]Nam YS, Park TG. Porous biodegradable polymeric scaffolds prepared by thermally induced phase separation [J]. J Biomed Mater Res, 1999, 47(1): 8-17.[5]Whang K, Thomas CH, Healy KE. A novel method to fabricate bioabsorbable scaffolds [J]. Polymer, 1995, 36(4): 837-842.
[6]崔新爱, 刘欣, 孔德领,等. 静电纺胶原/丝素复合微纳米纤维的制备及细胞相容性研究 [J]. 中国生物医学工程学报, 2012, 31(2): 291-299.
[7]赵晋, 周志华, 李敏. 蛛丝蛋白/聚己内酯/壳聚糖复合纳米纤维支架与内皮细胞的相容性 [J]. 中国生物医学工程学报, 2011, 30(5): 750-756.
[8]Mikos AG, Sarakinos G, Leite SM, et al. Laminated threedimensional biodegradable foams for use in tissue engineering [J]. Biomaterials, 1993, 14(5): 323-330.
[9]Hile DD, Amirpour ML, Akgerman A, et al. Active growth factor delivery from poly(D,Llactidecoglycolide) foams prepared in supercritical CO2 [J]. J Control Release, 2000, 66(2): 177-185.
[10]Santo VE, Duarte ARC, Popa EG, et al. Enhancement of osteogenic differentiation of human adipose derived stem cells by the controlled release of platelet lysates from hybrid scaffolds produced by supercritical fluid foaming [J]. J Control Release, 2012, 162(1): 19-27.
[11]Tai Hongyun, Mather ML, Howard D, et al. Control of pore size and structure of tissue engineering scaffolds produced by supercritical fluid processing [J]. Eur Cell Mater, 2007, 14: 64-77.
[12]Rouholamin D, Smith PJ, Ghassemieh E. Control of morphological properties of porous biodegradable scaffolds processed by supercritical CO2 foaming [J]. J Mater Sci, 2013, 48(8): 3254-3263.
[13]Teng Xinrong, Ren Jie, Gu Shuying. Preparation and characterization of porous PDLLAHA composite foams by supercritical carbon dioxide technology [J]. J Biomed Mater Res B, 2007, 81B(1): 185-193.
[14]White LJ, Hutter V, Tai Hongyun, et al. The effect of processing variables on morphological and mechanical properties of supercritical CO2 foamed scaffolds for tissue engineering [J]. Acta Biomater, 2012, 8(1): 61-71.
[15]Bhamidipati M, Scurto AM, Detamore MS. The future of carbon dioxide for polymer processing in tissue engineering [J]. Tissue Eng Part B Rev, 2013, 19(3): 221-232.
[16]Tsivintzelis I, Pavlidou E, Panayiotou C. Porous scaffolds prepared by phase inversion using supercritical CO2 as antisolvent [J]. J Supercrit Fluid, 2007, 40(2): 317-322.[17]Deng Aihua, Chen Aizheng, Wang Shibin, et al. Porous nanostructured polyLlactide scaffolds prepared by phase inversion using supercritical CO2 as a nonsolvent in the presence of ammonium bicarbonate particles [J]. J Supercrit Fluid, 2013, 77: 110-116.
[18]丁珊, 邢禹彬, 李立华,等. SCCO2纤维粘接法制备PLA/TCP/Collagen组织工程支架材料 [J]. 材料研究学报, 2007, 21(4): 348-353.
[19]MartiniVvedensky JE, Suh NP, Waldman FA. Microcellular closed cell foams and their method of manufacture [P]. U.S. Pantent: 4473665, 1984-09-25.
[20]何亚东. 聚合物微发泡材料制备技术应用研究进展 [J]. 塑料, 2004, 33(5): 9-15.
[21]Hong IK, Lee S. Microcellular foaming of silicone rubber with supercritical carbon dioxide[J]. Korean J Chem Eng, 2014, 31(1): 166-171.
[22]Ma Zhonglei, Zhang Guangcheng, Yang Quan, et al. Fabrication of microcellular polycarbonate foams with unimodal or bimodal cellsize distributions using supercritical carbon dioxide as a blowing agent [J]. Journal of Cellular Plastics, 2014, 50(1): 55-79.
[23]Yang Jintao, Huang Lingqi, Zhang Yuefang, et al. Mesoporous Silica Particles Grafted with Polystyrene Brushes as a Nucleation Agent for Polystyrene Supercritical Carbon Dioxide Foaming [J]. J Appl Polym Sci, 2013, 130(6): 4308-4317.
[24]Ding Jie, Ma Weihua, Song Fujiao, et al. Foaming of polypropylene with supercritical carbon dioxide: An experimental and theoretical study on a new process [J]. J Appl Polym Sci, 2013, 130(4): 2877-2885.
[25]Mooney DJ, Mazzoni CL, Breuer C, et al. Stabilized polyglycolic acid fibrebased tubes for tissue engineering [J]. Biomaterials, 1996, 17(2): 115-124.
[26]廖若谷. 超临界二氧化碳发泡过程中聚合物泡孔结构的控制 [D]. 上海: 上海交通大学, 2009.
[27]高长云, 周南桥, 彭响方. 微孔发泡过程中聚合物超临界CO2均相体系形成的研究 [J]. 工程塑料应用, 2003, 31(10): 32-34.
[28]Park CB, Baldwin DF, Suh NP. Effect of the pressure drop rate on cell [J]. Polym Eng Sci, 1995, 35(5): 432-440.
[29]卢岩, 信春玲, 李庆春,等. 聚合物超临界流体发泡体系的泡孔生长过程模拟 [J]. 塑料, 2009, 38(1): 16-18.
[30]Gualandi C, White LJ, Liu Chen, et al. Scaffold for tissue engineering fabricated by nonisothermal supercritical carbon dioxide foaming of a highly crystalline polyester [J]. Acta Biomater, 2010, 6(1): 130-136.
[31]Putta S, Nasser SN. Molecularlybased numerical evaluation of free volume in amorphous polymers [J]. Mat Sci and Eng Astruct, 2001, 317(1): 70-76.[32]Tsioptsias C, Panayiotou C. Foaming of chitin hydrogels processed by supercritical carbon dioxide [J]. J Supercrit Fluid, 2008, 47(2): 302-308.
[33]李静莉, 罗世凯, 沙艳松,等. 超临界流体微孔发泡塑料的研究进展 [J]. 工程塑料应用, 2012, 40(3): 109-113.
[34]Tayton E, Purcell M, Aarvold A, et al. Supercritical CO2 fluidfoaming of polymers to increase porosity: A method to improve the mechanical and biocompatibility characteristics for use as a potential alternative to allografts in impaction bone grafting? [J]. Acta Biomater, 2012, 8(5): 1918-1927.
[35]Yang Guanghui, Su Juanjuan, Gao Jian, et al. Fabrication of wellcontrolled porous foams of graphene oxide modified poly(propylenecarbonate) using supercritical carbon dioxide and its potential tissue engineering applications [J]. J Supercrit Fluid, 2013, 73: 1-9.
[36]Xia Zhong, Dehghani F. Fabrication of biomimetic poly(propylene carbonate) scaffolds by using carbon dioxide as a solvent, monomer and foaming agent [J]. Green Chem, 2012, 14(9): 2523-2533.
[37]Markocic E, Skerget M, Knez Z. Solubility and diffusivity of CO2 in poly(Llactide)hydroxyapatite and poly(DLlactidecoglycolide)hydroxyapatite composite biomaterials [J]. J Supercrit Fluid, 2011, 55(3): 1046-1051.
[38]Delabarde C, Plummer CJG, Bourban PE, et al. Biodegradable polylactide/hydroxyapatite nanocomposite foam scaffolds for bone tissue engineering applications [J]. J Mater Sci: Mater Med, 2012, 23(6): 13711385.
[39]Zhang Wenhao, Chen Binyi, Zhao Haibin, et al. Processing and Characterization of Supercritical CO2 Batch Foamed Poly(lactic acid)/Poly(ethylene glycol) Scaffold for Tissue Engineering Application [J]. J Appl Polym Sci, 2013,
130(5): 3066-3073.
[40]Ji Chengdong, Annabi N, Hosseinkhani M, et al. Fabrication of polyDLlactide/polyethylene glycol scaffolds using the gas foaming technique [J]. Acta Biomater, 2012, 8(2): 570-578.
[41]Kim SH, Jung Y, Kim SH. A biocompatible tissue scaffold produced by supercritical fluid processing for cartilage tissue engineering [J]. Tissue Engineering Part C: Methods, 2013, 19(3): 181-188.
[42]Santo VE, Duarte ARC, Gomes ME, et al. Hybrid 3D structure of poly(D,Llactic acid) loaded with chitosan/chondroitin sulfate nanoparticles to be used as carriers for biomacromolecules in tissue engineering [J]. J Supercrit Fluid, 2010, 54(3): 320-327.
[43]Tai Hongyun, Upton CE, White LJ, et al. Studies on the interactions of CO2 with biodegradable poly(DLlactic acid) and poly(lactic acidcoglycolic acid) copolymers using high pressure ATRIR and high pressure rheology [J]. Polymer, 2010, 51(6): 1425-1431.
[44]Sheridan MH, Shea LD, Peters MC, et al. Bioabsorbable polymer scaffolds for tissue engineering capable of sustained growth factor delivery [J]. J Control Release, 2000, 64(1): 91-102.
[45]Harris LD, Kim BS, Mooney DJ. Open pore biodegradable matrices formed with gas foaming [J]. J Biomed Mater Res, 1998, 42(3): 396-402.
[46]Takagi S, Chow LC. Formation of macropores in calciumphosphate cement implants [J]. J Mater Sci Mater Med, 2001, 12(2): 135-139.
[47]Collins NJ, Leeke GA, Bridson RH, et al. The influence of silica on pore diameter and distribution in PLA scaffolds produced using supercritical CO2 [J]. J Mater Sci Mater Med, 2008, 19(4): 1497-1502.
[48]Barralet JE, Grover L, Gaunt T, et al. Preparation of macroporous calcium phosphate cement tissue engineering scaffold [J]. Biomaterials, 2002, 23(15): 3063-3072.
[49]Collins NJ, Bridson RH, Leeke GA, et al. Particle seeding enhances interconnectivity in polymeric scaffolds foamed using supercritical CO2 [J]. Acta Biomater, 2010, 6(3): 1055-1060.
[50]Xing Zhe, Wang Mouhua, Du Guohao, et al. Preparation of microcellular polystyrene/polyethylene alloy foams by supercritical CO2 foaming and analysis by Xray microtomography [J]. J Supercrit Fluid, 2013, 82: 50-55.
[51]Goel SK, Beckman EJ. Generation of microcellular polymeric foams using supercritical carbon dioxide. I: Effect of pressure and temperature on nucleation [J]. Polym Eng Sci, 1994, 34(14): 1137-1147.
[52]Tsioptsias C, Stefopoulos A, Kokkinomalis I, et al. Development of micro and nanoporous composite materials by processing cellulose with ionic liquids and supercritical CO2 [J]. Green Chem, 2008, 10(9): 965-971.
[53]Gutiérrez C, Rodríguez JF, Gracia I, et al. Development of a strategy for the foaming of polystyrene dissolutions in scCO2 [J]. J Supercrit Fluid, 2013, 76: 126-134.
[54]刘倩倩, 唐川, 杜哲,等. 超临界CO2发泡法制备PLGA多孔组织工程支架 [J]. 高分子学报, 2013, (2): 174-182.
[55]许志美, 姜修磊, 刘涛,等. 应用超临界CO2制备微孔聚丙烯的微孔形貌 [J]. 功能高分子学报, 2007, 19(1): 21-26.
[56]Barry JJA, Silva MMCG, Popov VK, et al. Supercritical carbon dioxide: putting the fizz into biomaterials [J]. Philos Trans A Math Phys Eng Sci, 2006, 364(1838): 249-261.[57]Barry JJA, Silva MMCG, Cartmell SH, et al. Porous methacrylate tissue engineering scaffolds: using carbon dioxide to control porosity and interconnectivity [J]. J Mater Sci, 2006, 41(13): 4197-4204.
[58]Cabezas LI, Fernández V, Mazarro R, et al. Production of biodegradable porous scaffolds impregnated with indomethacin in supercritical CO2 [J]. J Supercrit Fluid, 2012, 63: 155-160.
[59]Cabezas LI, Gracia I, García MT, et al. Production of biodegradable porous scaffolds impregnated with 5-fluorouracil in supercritical CO2 [J]. J Supercrit Fluid, 2013, 80: 1-8.
[60]Singh M, Sandhu B, Scurto A, et al. Microspherebased scaffolds for cartilage tissue engineering: using subcritical CO2 as a sintering agent [J]. Acta Biomater, 210, 6(1): 137-143.
[61]Ginty PJ, Howard D, Upton CE, et al. A supercritical CO2 injection system for the production of polymer/mammalian cell composites [J]. J Supercrit Fluid, 2008, 43(3): 535-541. |
|
|
|