|
|
Application Specific Integrated Circuit (ASIC) for Retinal Prosthesis |
1 Shenzhen Institutes of Advance Technology, Chinese Academy of Sciences, Shenzhen 518054,China
2 School of Software and Microelectronics, Peking University, Beijing 100871, China
3 College of Information Science and Technology, Chengdu University of Technology, Chengdu 610059,China |
|
|
Abstract In recent years,the retinal prosthesis has become a hot point in vision restoration. This paper introduces the main categories and implementation methods of ASIC (application specific integrated circuit) for retinal prosthesis. The comparison of the implementation of epiretinal prosthesis and subretinal prosthesis is made to clarify their advantages as well as disadvantages. The basic theories and research progress of the power and data telemetry module, global digital controller and neural stimulator array are discussed. Challenges and potential trends in the design of ASIC for retinal prosthesis are discussed as well.
〖KH2D〗
〖WTHZ〗Key words:〖WTBZ〗〖BP(〗┣┣(英)关键词┫┫〖BP)〗〖HT〗〖ST〗〖WT〗〖HJ〗〖HK〗
|
|
|
|
|
[1]Musarella MA, Macdonald IM. Current concepts in the treatment of retinitis pigmentosa [J]. J Ophthalmol, 2011, 2011: 753547.
[2]Bressler NM, Bressler SB, Fine SL. Agerelated macular degeneration [J]. Surv Ophthalmol, 1988, 32(6): 375-413.
[3]Zeng Fangang, Rebscher S, Harrison W, et al. Cochlear Implants: System Design, Integration, and Evaluation [J]. IEEE Rev Biomed Eng, 2008, 1: 115-142.
[4]Wentai L, McGucken E, Vitchiechom K, et al. Dual unit visual intraocular prosthesis [C] // Proceedings of 19th Int Conf IEEEEMBS. Chicago: IEEE, 1997:2305:2303-2306.
[5]Kochendoerfer GG, Lin SW, Sakmar TP, et al. How color visual pigments are tuned [J]. Trends in biochemical sciences, 1999, 24(8): 300-305.
[6]Taylor WR, Smith RG. Trigger features and excitation in the retina [J]. Curr Opin Neurobiol, 2011, 21(5): 672-678.
[7]Margalit E, Maia M, Weiland JD, et al. Retinal prosthesis for the blind [J]. Surv Ophthalmol, 2002, 47(4): 335-356.
[8]Matthaei M, Zeitz O, Keseru M, et al. Progress in the development of vision prostheses [J]. Ophthalmologica, 2011, 〖STHZ〗225(4): 187-192.
[9]Javaheri M, Hahn DS, Lakhanpal RR, et al. Retinal prostheses for the blind [J]. AnnalsAcademy of Medicine Singapore, 2006,35(3): 137.
[10]Zhou DD, Dorn JD, Greenberg RJ. The Argus II retinal prosthesis system: An overview [C] //Proceedings of IEEE International Conference Multimedia and Expo Workshops 2013. San Jose: IEEE, 2013: 1-6.
[11]孙康明. 高性能视网膜修复芯片的研究[D]. 重庆: 重庆大学, 2010.
[12]Benav H, BartzSchmidt KU, Besch D, et al. Restoration of useful vision up to letter recognition capabilities using subretinal microphotodiodes [C] //Proceedings of 2010 Annual International Conference IEEE EMBS. Buenos Aires: IEEE, 2010: 5919-5922.
[13]Zrenner E, BartzSchmidt KU, Benav H, et al. Subretinal electronic chips allow blind patients to read letters and combine them to words [J]. Proceedings of the Royal Society B: Biological Sciences, 2011, 278(1711): 1489-1497.
[14]Loudin JD, Cogan SF, Mathieson K, et al. Photodiode circuits for retinal prostheses [J]. IEEE Trans Biomed Circuits Syst, 2011, 5(5): 468-480.
[15]Weiland JD, Liu W, Humayun MS. Retinal prosthesis [J]. IEEE Annu Rev Biomed Eng, 2005, 7: 361-401.
[16]Rothermel A, Liu L, Aryan NP, et al. A CMOS Chip with active pixel array and specific test features for subretinal implantation [J]. IEEE J SolidState Circuits, 2009, 44(1): 290-300.
[17]Zhang Xu, Pei Weihua, Huang Beiju, et al. A CMOS chip with active imaging and stimulation pixels for implantable retinal prosthesis [C] //Proceedings of IEEE BioCAS 2010. Paphos: IEEE, 2010: 98-101.
[18]储三军, 徐海峰. 视网膜假体的研究进展 [J]. 国际眼科纵览, 2013, 37(4): 256-260.
[19]王淑静, 裴为华, 张旭, 等. 视网膜假体的研究进展 [J]. 高技术通讯, 2009, 19(10): 1092-1100.
[20]Rizzo JF, Shire DB, Kelly SK, et al. Overview of the boston retinal prosthesis: Challenges and opportunities to restore useful vision to the blind [C] //Proceedings of 2011 Annual International Conference IEEE EMBS. Boston: IEEE, 2011: 7492-7495.
[21]Asher A, Segal WA, Baccus SA, et al. Image processing for a highresolution optoelectronic retinal prosthesis [J]. IEEE Trans Biomed Eng, 2007, 54(6): 993-1004.
[22]张莹, 彭承琳, 王星, 等. 人工视网膜芯片的能量供给装置设计研究进展 [J]. 生物医学工程学杂志, 2008, 25(4): 954-957.
[23]Wang Guoxing, Wentai L, Bashirullah R, et al. A closed loop transcutaneous power transfer system for implantable devices with enhanced stability [C] //Proceedings of IEEE International Symposium on Circuits and Systems. Vancouver: IEEE, 2004: 4, IV-17-20.
[24]Zhou Mingcui, Yuce M, Wentai L. A noncoherent dpsk data receiver with interference cancellation for dualband transcutaneous telemetries [J]. IEEE J SolidState Circuits, 2008, 43(9): 2003-2012.
[25]Tang Zhengnian, Smith B, Schild JH, et al. Data transmission from an implantable biotelemeter by loadshift keying using circuit configuration modulator [J]. IEEE Trans Biomed Eng, 1995, 42(5): 524-528.
[26]Wang Guoxing, Wentai L, Sivaprakasam M, et al. Design and analysis of an adaptive transcutaneous power telemetry for biomedical implants [J]. IEEE Trans Circuits Syst Regul Pap, 2005, 52(10): 2109-2117.
[27]Kuanfu C, Wentai L. Highly programmable digital controller for highdensity epiretinal prosthesis [C] //Proceedings of 2009 Annual International Conference IEEE EMBS. Minneapolis: IEEE, 2009: 1592-1595.
[28]ChihLin L, ChihCheng H. A 08V 4096pixel CMOS senseandstimulus imager for retinal prosthesis [J]. IEEE Trans Electron Devices, 2013, 60(3): 1162-1168.
[29]Kuanfu C, MingHsien T, FuLung H, et al. Analysis and design of data transmission protocol for 1024channel retinal prosthesis [C] //Proceedings of 2011 Annual International Conference IEEE EMBS. Boston: IEEE, 2011: 4010-4013.
[30]Franks W, Schenker I, Schmutz P, et al. Impedance characterization and modeling of electrodes for biomedical applications [J]. IEEE Trans Biomed Eng, 2005, 52(7): 1295-1302.
[31]Randles J. Kinetics of rapid electrode reactions [J]. Discussions of the Faraday Society, 1947, 1: 11-19.
[32]YiKai L, Hill R, Kuanfu C, et al. Precision control of pulse widths for charge balancing in functional electrical stimulation [C] //Proceedings of Neural Engineering (NER), 2013 6th International Conference IEEE EMBS. San Diego: IEEE, 2013: 1481-1484.
[33]Chun H, Yang Y, Lehmann T. Safety ensuring retinal prosthesis with precise charge balance and low power consumption [J]. IEEE Trans Biomed Circuits Syst, 2014, 8(1): 108-118.
[34]Sooksood K, Stieglitz T, Ortmanns M. An active approach for charge balancing in functional electrical stimulation [J]. IEEE Trans Biomed Circuits Syst, 2010, 4(3): 162-170.
[35]Mahadevappa M, Weiland JD, Yanai D, et al. Perceptual thresholds and electrode impedance in three retinal prosthesis subjects [J]. IEEE Trans Neural Syst Rehabil Eng, 2005, 13(2): 201-206.
[36]Yi-Kai L, Kuanfu C, Gad P, et al. A fullyintegrated highcompliance voltage soc for epiretinal and neural prostheses [J]. IEEE Trans Biomed Circuits Syst, 2013, 7(6): 761-772.
[37]Hosung C, Yang Yuanyuan, Lehmann T. Required matching accuracy of biphasic current pulse in multichannel current mode bipolar stimulation for safety C] //Proceedings of 2012 Annual International Conference IEEE EMBS. San Diego: IEEE, 2012: 3025-3028.
[38]Liu X, Demosthenous A, Donaldson N. A dualmode neural stimulator capable of delivering constant current in currentmode and high stimulus charge in semivoltageode [C] //Proceedings of IEEE International Symposium on Circuits and Systems 2010. Paris: IEEE, 2010: 2075-2078.
[39]Ortmanns M, Rocke A, Gehrke M, et al. A 232-channel epiretinal stimulator ASIC [J]. IEEE J SolidState Circuits, 2007, 42(12): 2946-2959.
[40]Chen JyunTing, Tang KeaTiong, Wang Guoxing. Challenges in circuits for visual prostheses [C] //Proceedings of IEEE ISCAS 2013. Beijing: IEEE, 2013: 634-637.
[41]Weitz AC, Behrend MR, Humayun MS, et al. Interphase gap decreases electrical stimulation threshold of retinal ganglion cells [C] //Proceedings of 2011 Annual International Conference IEEE EMBS. Boston: IEEE, 2011: 6725-6728.
[42]Sit JJ, Sarpeshkar R. A lowpower blockingcapacitorfree chargebalanced electrodestimulator chip with less than 6 nA DC error for 1-mA fullscale stimulation [J]. IEEE Trans Biomed Circuits Syst, 2007, 1(3): 172-183.
[43]Lee EKF, Lam A. A Matching Technique for Biphasic Stimulation Pulse [C] //Proceedings of IEEE ISCAS 2007. New Orleans: IEEE, 2007: 817-820.
[44]Liu Xiao, Demosthenous A. Generation of balanced biphasic stimulus current with integrated blocking capacitor [C] //Proceedings of European Conference on Circuit Theory and Design 2005. Cork: IEEE, 2005: 13:3 III/19-III/22.
[45]Liu Xiao, Demosthenous A, Donaldson N. An integrated implantable stimulator that is failsafe without offchip blockingcapacitors [J]. IEEE Trans Biomed Circuits Syst, 2008, 2(3): 231-244.
[46]Chow AY, Pardue MT, Chow VY, et al. Implantation of silicon chip microphotodiode arrays into the cat subretinal space [J]. IEEE Trans Neural Syst Rehabil Eng, 2001, 9(1): 86-95.
[47]Zrenner E, Wilke R, BartzSchmidt K, et al. Subretinal microelectrode arrays allow blind retinitis pigmentosa patients to recognize letters and combine them to words [C] //Proceedings of 2nd International Conference of BMEI. Tianjin: IEEE, 2009: 1-4.
[48]Ng DC, Furumiya T, Yasuoka K, et al. Pulse frequency modulation based CMOS image sensor for subretinal stimulation [J]. IEEE Trans Circuits Syst Express Briefs, 2006, 53(6): 487-491.
[49]Chen K, Lo YK, Liu W. A 376 mm2 1024channel highcompliancevoltage SoC for epiretinal prostheses [C] //Proceedings of 2013 IEEE ISSCC Digital Technology Papers. San Francisco: IEEE, 2013: 294-295.
|
|
|
|