|
|
Progress of Carriers and Techniques for Therapeutic Enzymes |
Wan Shengli, Yang Gang, Ye Yun* |
(The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China) |
|
|
Abstract Therapeutic enzymes are a class of medicines with medical effects. In recent years, more and more attention has been paid to the development of new carriers and new technologies for therapeutic enzymes. In this review, new carriers of therapeutic enzymes, including liposomes, nanoparticles, micelles, red blood cells, inclusion complexes and microemulsions, were summarized. And new technologies of therapeutic enzymes, such as supercritical fluid technology and chemical modification technology, were explained. Application examples showed that both new carriers and new technologies can optimize therapeutic enzymes. New carriers and technologies have broad prospects in the research and development of therapeutic enzymes.
|
Received: 12 March 2019
|
|
|
|
|
[1] Xu Na, Chen Zhouqing, Zhao Chongshun, et al. Different doses of tenecteplase vs alteplase in thrombolysis therapy of acute ischemic stroke: evidence from randomized controlled trials[J]. Drug Des Devel Ther, 2018, 12:2071-2084.
[2] Dean SN, Turner KB, Medintz IL, et al. Targeting and delivery of therapeutic enzymes[J]. Ther Deliv, 2017, 8(7):577-595.
[3] Kong Hui, Wu Fangli, Jiang Xiaoyu, et al. Nano-TiO2 impairs digestive enzyme activities of marine mussels under ocean acidification. [J]. Chemosphere, 2019, 237:124561.
[4] Galliani M, Santi M, Del Grosso A, et al. Cross-Linked Enzyme aggregates as versatile tool for enzyme delivery: application to polymeric nanoparticles[J]. Bioconjug Chem, 2018, 29(7):2225-2231.
[5] Xiong Huarong, Zhou Yunli, Zhou Qixin, et al. Nanosomal microassemblies for highly efficient and safe delivery of therapeutic enzymes[J]. ACS Appl Mater Interfaces, 2015, 7(36):20255-20263.
[6] 杨兰,周云莉,李瑶,等. 尿酸酶-过氧化氢酶脂质体的特性分析及药效学研究[J]. 中国药理学通报, 2017, 33(9):1211-1214.
[7] 王弘,吴梧桐,顾学裘. 重组L-门冬酰胺酶空前体脂质体的研制及其包封率的测定[J]. 沈阳药科大学学报, 1999, 16(4): 235-238.
[8] 张婵,李小东,王成涛. 豆豉纤溶酶载纳米脂质体的制备与表征[J]. 中国食品学报, 2014, 4(7):32-38.
[9] Ulu A, Noma SAA, Koytepe S, et al. Magnetic Fe3O4@MCM-41 core-shell nanoparticles functionalized with thiol silane for efficient L-asparaginase immobilization[J]. Artif Cells Nanomed Biotechnol, 2018, 6:1-11.
[10] Zdarta J, Antecka K, Jędrzak A, et al. Biopolymers conjugated with magnetite as support materials for trypsin immobilization and protein digestion [J]. Colloids Surf B Biointerfaces, 2018, 169:118-125.
[11] Bahreini E, Aghaiypour K, Abbasalipourkabir R, et al. Preparation and nanoencapsulation of L-asparaginase II in chitosan-tripolyphosphate nanoparticles and in vitro release study[J]. Nanoscale Res Lett, 2014, 9(1):340.
[12] 陈焱,黄健花,蔡春明,等. 过氧化氢酶固体脂质纳米粒的制备[J]. 食品与生物技术学报, 2011, 30(4):489-495.
[13] 王娜,赵春景,黄开顺,等. 产朊假丝酵母尿酸酶脂质纳米粒的制备及其药效学特性分析[J]. 中国生物制品学杂志, 2013, 26(8):1147-1150.
[14] Yang Tian, Zhang Yushuai, Yang Xiaolu, et al. A novel self-assembled nano micelle as a highly efficient artificial peroxidase based on hexadecyl trimethyl ammonium bromide and cytochrome c[J]. Biomed Mater Eng, 2015;26 Suppl 1:S73-9.
[15] 黄鑫. 谷胱甘肽过氧化物纳米酶模型的构建[D]. 长春:吉林大学, 2009:59-71.
[16] Gao Min, Hu Aiyan, Sun Xiaoqi, et al. Photosensitizerdecorated red blood cells as an ultrasensitive light-responsivedrug delivery system[J]. ACS Appl Mater Interfaces, 2017, 9(7):5855-5863.
[17] Agrawal V, Woo JH, Borthakur G, et al. Red blood cell-encapsulated L-asparaginase: potential therapy of patients with asparagine synthetase deficient acute myeloid leukemia[J]. Protein Pept Lett, 2013, 20(4):392-402.
[18] Domenech C, Thomas X, Chabaud S, et al. L-asparaginase loaded red blood cells in refractory or relapsing acute lymphoblastic leukaemia in children and adults: results of the GRASPALL 2005-01 randomized trial[J]. Br J Haematol, 2011, 153(1):58-65.
[19] Lizano C, Sanz S, Luque J, Pinilla M. In vitro study of alcohol dehydrogenase and acetaldehyde dehydrogenase encapsulated into human erythrocytes by an electroporation procedure[J]. Biochim Biophys Acta, 1998, 1425:328-336.
[20] Bax BE, Bain MD, Scarpelli M, et al. Clinical and biochemical improvements in a patient with MNGIE following enzyme replacement[J]. Neurology, 2013, 81:1269-1271.
[21] Kosenko EA, Venediktova NI, Kudryavtsev AA, et al. Encapsulation of glutamine synthetase in mouse erythrocytes: a new procedure for ammonia detoxification[J]. Biochem Cell Biol, 2008, 86:469-476.
[22] Yew NS, Dufour E, Przybylska M, et al. Erythrocytes encapsulated with phenylalanine hydroxylase exhibit improved pharmacokinetics and lowered plasma phenylalanine levels in normal mice[J]. Mol Genet Metab, 2013, 109:339-344.
[23] Rossi L, Pierigè F, Carducci C, et al. Erythrocyte-mediated delivery of phenylalanine ammonia lyase for the treatment of phenylketonuria in BTBR-Pah(enu2) mice[J]. J Control Release, 2014, 194:37-44.
[24] 刘阳,段小祥,王嫚,等. 槲皮素-羟丙基-β-环糊精包合物对柔红霉素心脏毒性的保护作用[J]. 中国医院药学, 2017, 37(2):117-120.
[25] 张云峰,李军,胡伶俐,等. 纳豆激酶羟丙基-β-环糊精包合物的制备和鉴定[J]. 广东化工, 2011, 1(38):10,44.
[26] Hu X, Wang Y, Liu C, et al. Dextrin-uricase conjugate: Preparation, characterization, and enzymatic properties[J]. Int J Biol Macromol, 2018, 111:28-32.
[27] 万胜利,李瑶,何丹,等. 天门冬酰胺酶羟丙基-β-环糊精脂质体的稳定性及相关机制的初步研究[J]. 华西药学杂志, 2017, 32(2):157-159.
[28] Cheng Maobo, Wang Jiancheng, Li Yuhua. Characterization of water in oil microemulsion for oral delivery of earthworm fibrinolytic enzyme[J]. J Control Release, 2008, 129(1):41-48.
[29] Moshashaée S, Bisrat M, Forbes RT, et al. Supercritical fluid processing of proteins. I: lysozyme precipitation from organic solution[J]. Eur J Pharm Sci, 2000, 11(3):239-245.
[30] 付天然,张良.SUMO化修饰对人源胸腺嘧啶DNA糖基化酶的结构影响及活性调控[J]. 上海交通大学学报(医学版), 2018, 38(1):24-29.
[31] Peer D, Karp JM, Hong S, et al. Nanocarriers as an emerging platform for cancer therapy[J]. Nat Nanotechnol, 2007, 2(12):751-750.
[32] Scott AM, Wolchok JD, Old LJ. Antibody therapy of cancer[J]. Nat Rev Cancer, 2012, 12(4):278-287. |
|
|
|