[1] 张建辉,王根明. 人工机械心脏瓣膜用热解炭 [M]. 北京:科学出版社, 2016: 24-25. [2] Lou HF, Chen RK, Xu SW, et al. Observations on durability of a pyrolytic carbon bileaflet mechanical heart valve [J]. Chinese Journal of Biomedical Engineering (English Edition), 2010, 19 (3): 109-113. [3] Gott VL, Alejo DE, Cameron DE. Mechanical heart valves: 50 years of evolution [J]. The Annals of Thoracic Surgery, 2003, 6 (6): 2230-2239. [4] Kostrzewa B, Rybak Z. History, present and future of biomaterials used for artificial heart valves [J]. Polimery W Medycynie, 2013, 43 (3): 183-189. [5] Qian JY, Gao ZX, Hou CW, et al. A comprehensive review of cavitation in valves: mechanical heart valves and control valves[J]. Bio-Design and Manufacturing, 2019, 2 (2): 119-136. [6] Ritchie RO, Dauskardt RH. Pyrolytic Carbon Coatings [J]. An Introduction to Bioceramics, 2013, 2: 367-388. [7] 张建辉,邢兴. 人工心瓣热解炭断裂韧性有限元分析 [J]. 中国生物医学工程学报, 2012, 31 (6): 889-894. [8] 张建辉,郑艳真. 化学气相沉积低温各向同性热解炭微观结构及沉积机制 [J]. 复合材料学报, 2016, 33 (8): 1812-1818. [9] 殷腾,蒋炳炎,苏哲安,等. 载气对化学气相沉积中气体流场、反应物与热解炭沉积率影响的仿真研究 [J]. 新型炭材料, 2018, 33 (4): 357-363. [10] 李克智,和永岗,李贺军,等. 化学气相沉积低温热解炭的微观组织结构与沉积模型 [J]. 新型炭材料, 2012, 27 (2): 81-86. [11] Ritchie RO, Dauskardt RH, Yu WK. Cyclic fatigue-crack propagation, stress-corrosion, and fracture-toughness behavior in pyrolytic carbon-coated graphite for prosthetic heart valve applications [J]. Biomed Mater Res, 1990, 24 (1): 189-204. [12] Dauskardt RH, Ritchie RO, Takernoto JK, et al. Cyclic fatigue and fracture in pyrolytic carbon-coated graphite mechanical heart-valve prostheses: Role of small cracks in life prediction [J]. Journal of Biomedical Materials Research, 1993, 28 (6): 229-236. [13] Kruzic JJ, Kuskowski SJ, Ritchie RO. Simple and accurate fracture toughness testing methods for pyrolytic carbon graphite composites used in heart-valve prostheses [J]. Journal of Biomedical Materials Research A, 2005, 74 (3): 461-464. [14] Kwiecinska BK, Pusz S. Pyrolytic carbon — Definition, classification and occurrence [J]. International Journal of Coal Geology, 2016, 163 (1): 1-7. [15] 张建辉,宋银超,夏文莉. 低温各向同性热解炭性能和结构变化 [J]. 中国生物医学工程学报, 2015, 34 (5): 634-639. [16] 程靳,赵树山. 断裂力学 [M]. 北京:科学出版社, 2006: 194-200. [17] Cao Hengchu. Mechanical performance of pyrolytic carbon in prosthetic heart valve applications [J]. Heart Valve Disease, 1996, 5(1): 32-49. [18] Xia Lihong, Huang Boyun, Zhang Fuqin, et al. Effect of heat treatment on cracking and strength of carbon/carbon composites with smooth laminar pyrocarbon matrix [J]. Materials & Design, 2016, 107 (1): 33-40. [19] 臧启山,姚戈,编著. 工程断裂力学简明教程 [M]. 合肥:中国科学技术大学出版社, 2014: 51-56. [20] Nejad RM, Shariati M, Farhangdoost K. Prediction of fatigue crack propagation and fractography of rail steel [J]. Theoretical and Applied Fracture Mechanics, 2019,101: 320-331. [21] Morrell R, Mingard K, Zunega J. Fractography of hardmetal dies used for the manufacture of polycrystalline diamond [J]. Journal of the European Ceramic Society, 2017, 37 (14): 4259-4264. [22] Scherrer SS, Lohbauer U, Della BA. ADM guidance-Ceramics: guidance to the use of fractography in failure analysis of brittle materials [J]. Dental Materials, 2017, 33 (6): 599-620. [23] Karthik G, John JM. Quantitative fractography of mixed mode fracture in glass and ceramics [J]. Journal of the European Ceramic Society, 2014, 34 (14): 3247-3254. |