|
|
Research Progress in Brain Magnetic Source Localization Reconstruction Algorithm |
Yang Yanling1,2, Yao Xufeng2*, Luo Shichang1,2, Shi Cheng1,2, Gao Xiumin3, Wu Tao2 |
1(School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China) 2(College of Medical Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China) 3(School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China) |
|
|
Abstract As a non-invasive functional neuroimaging method of human brain, magnetoencephalography has been widely concerned in clinical applications due to its high temporal resolution and non-invasive characteristics. The inverse problem of inferring the distribution of current sources in the brain from the data of scalp magnetic field is the central problem in the research of brain magnetic source localization. The difficulty lies in the uniqueness and ill-posed feature of the inverse problem. The reconstruction methods are divided into two categories: distributed source model and dipole localization. Therefore, this article systematically discussed the development of magnetoencephalography and magnetic source imaging. The distributed source model includes minimum norm estimation, low resolution brain electromagnetic tomography, focal underdetermined system solution, Bayesian estimation, beamformer and sparse source imaging. Dipole localization includes maximum entropy method, least-squares minimum norm, multiple-signal classification algorithm, neural network and genetic algorithm. Existing problems and development trends were analyzed, highlighting that multimodal reconstruction methods that integrate multiple brain function technologies are expected to become the most important detection technology for neural function diagnosis.
|
Received: 09 February 2023
|
|
Corresponding Authors:
*E-mail: yao6636329@hotmail.com
|
|
|
|
[1] Gross J. Magnetoencephalography in cognitive neuroscience: a primer[J]. Neuron, 2019, 104(2): 189-204. [2] Schoonhoven DN, Briels CT, Hillebrand A, et al. Sensitive and reproducible MEG resting-state metrics of functional connectivity in Alzheimer’s disease[J]. Alzheimer's Research Therapy, 2022, 14(1): 1-19. [3] Cohen D. Magnetoencephalography: evidence of magnetic fields produced by alpha-rhythm currents[J]. Science, 1968, 161(3843): 784-786. [4] Walsh ED, Jung W, Lee G-H, et al. Josephson junction infrared single-photon detector[J]. Science, 2021, 372(6540): 409-412. [5] 马恒芬,吴云涛,赵文,等. 双语脑功能机制的脑磁图研究进展[J].中国生物医学工程学报, 2021, 40(4):477-484. [6] Jundi Li, Wei Quan, Binquan Zhou, et al. SERF atomic magnetometer-recent advances and applications: a review[J]. IEEE Sensors Journal, 2018, 18(20): 8198-8207. [7] An N, Cao F, Li W, et al. Spatial accuracy evaluation of magnetic source imaging methods on OPM-based MEG[J]. Iscience, 2022, 25(10): 1-19. [8] Tierney TM, Holmes N, Mellor S, et al. Optically pumped magnetometers: from quantum origins to multi-channel magnetoencephalography[J]. NeuroImage, 2019, 199: 598-608. [9] Suzuki K, Yamashita O. MEG current source reconstruction using a meta-analysis fMRI prior[J]. NeuroImage, 2021, 236: 1-14. [10] Brookes MJ, Leggett J, Rea M, et al. Magnetoencephalography with optically pumped magnetometers (OPM-MEG): the next generation of functional neuroimaging[J]. Trends in Neurosciences, 2022, 45(8): 621-634. [11] Johnson C, Schwindt PD, Weisend M. Magnetoencephalography with a two-color pump-probe, fiber-coupled atomic magnetometer[J]. Applied Physics Letters, 2010, 97(24): 1-3. [12] Garcia NC, Yu D, Yao L, et al. Optical atomic magnetometer at body temperature for magnetic particle imaging and nuclear magnetic resonance[J]. Optics letters, 2010, 35(5): 661-663. [13] Ito Y, Ohnishi H, Kamada K, et al. Rate-equation approach to optimal density ratio of K-Rb hybrid cells for optically pumped atomic magnetometers[C]// Nigel Lovell. 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Osaka: IEEE, 2013: 3254-3257. [14] Boto E, Holmes N, Leggett J, et al. Moving magnetoencephalography towards real-world applications with a wearable system[J]. Nature, 2018, 555(7698): 657-661. [15] Liu Q, Farahibozorg S, Porcaro C, et al. Detecting large-scale networks in the human brain using high-density electroencephalography[J]. Human Brain Mapping, 2017, 38(9): 4631-4643. [16] Hassan M, Wendling F. Electroencephalography source connectivity: aiming for high resolution of brain networks in time and space[J]. IEEE Signal Processing Magazine, 2018, 35(3): 81-96. [17] Pantazis D, Adler A. MEG source localization via Deep Learning[J]. Sensors, 2021, 21(13): 1-15. [18] Kao C, Zhang Y. Magnetic source imaging and infant MEG: current trends and technical advances[J]. Brain Sciences, 2019, 9(8): 1-27. [19] Jeffs B, Leahy R, Singh M. An evaluation of methods for neuromagnetic image reconstruction[J]. IEEE Transactions on Biomedical Engineering, 1987, (9): 713-723. [20] Sarvas J. Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem[J]. Physics in Medicine Biology, 1987, 32(1): 11-22. [21] Clarke CJS. Probabilistic methods in a biomagnetic inverse problem[J]. Inverse Problems, 1989, 5(6): 999-1012. [22] Hämäläinen M, Huang M, Bowyer SM. Magnetoencephalography signal processing, forward modeling, inverse source imaging, and coherence analysis[J]. Neuroimaging Clinics, 2020, 30(2): 125-143. [23] Kim JA, Davis KD. Magnetoencephalography: Physics, techniques, and applications in the basic and clinical neurosciences[J]. Journal of Neurophysiology, 2021, 125(3): 938-956. [24] Piastra MC, Oostenveld R, Schoffelen JM, et al. Estimating the influence of stroke lesions on MEG source reconstruction[J]. NeuroImage, 2022, 260: 1-13. [25] Hämäläinen M, Hari R, Ilmoniemi RJ, et al. Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working human brain[J]. Reviews of Modern Physics, 1993, 65(2): 413-497. [26] Pascual-Marqui RD, Michel CM, Lehmann D. Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain[J]. International Journal of Psychophysiology, 1994, 18(1): 49-65. [27] Gorodnitsky IF, Rao BD. Sparse signal reconstruction from limited data using FOCUSS: a re-weighted minimum norm algorithm[J]. IEEE Transactions on Signal Processing, 1997, 45(3): 600-616. [28] Baillet S, Garnero L. A Bayesian approach to introducing anatomo-functional priors in the EEG/MEG inverse problem[J]. IEEE Transactions on Biomedical Engineering, 1997, 44(5): 374-385. [29] Gross J, Kujala J, Hämäläinen M, et al. Dynamic imaging of coherent sources: studying neural interactions in the human brain[J]. Proceedings of the National Academy of Sciences, 2001, 98(2): 694-699. [30] Potter LC, Ertin E, Parker JT, et al. Sparsity and compressed sensing in radar imaging[J]. Proceedings of the IEEE, 2010, 98(6): 1006-1020. [31] Leweke S, Hauk O, Michel V. Vector-valued spline method for the spherical multiple-shell electro-magnetoencephalography problem[J]. Inverse Problems, 2022, 38(8): 1-46. [32] Meinhardt T, Moller M, Hazirbas C, et al. Learning proximal operators: using denoising networks for regularizing inverse imaging problems[C]//Proceedings of the IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 1781-1790. [33] Dattola S, Morabito FC, Mammone N, et al. Findings about LORETA applied to high-density EEG: a review[J]. Electronics, 2020, 9(4): 660-677. [34] Gorodnitsky IF, Rao BD. Sparse signal reconstruction from limited data using FOCUSS: a re-weighted minimum norm algorithm[J]. IEEE Transactions on Signal Processing, 1997, 45(3): 600-616. [35] Gorodnitsky IF, George JS, Rao BD. Neuromagnetic source imaging with FOCUSS: a recursive weighted minimum norm algorithm[J]. Electroencephalography Clinical Neurophysiology, 1995, 95(4): 231-251. [36] Baillet S, Garnero L. A Bayesian approach to introducing anatomo-functional priors in the EEG/MEG inverse problem[J]. IEEE Transactions on Biomedical Engineering, 1997, 44(5): 374-385. [37] Cai C, Sekihara K, Nagarajan SS. Hierarchical multiscale Bayesian algorithm for robust MEG/EEG source reconstruction[J]. NeuroImage, 2018, 183: 698-715. [38] Liu K, Yu ZL, Wu W, et al. Bayesian electromagnetic spatio-temporal imaging of extended sources based on matrix factorization[J]. IEEE Transactions on Biomedical Engineering, 2019, 66(9): 2457-2469. [39] Calvetti D, Pascarella A, Pitolli F, et al. Brain activity mapping from MEG data via a hierarchical Bayesian algorithm with automatic depth weighting[J]. Brain Topography, 2019, 32: 363-393. [40] Gross J, Kujala J, Hämäläinen M, et al. Dynamic imaging of coherent sources: studying neural interactions in the human brain[J]. Proceedings of the National Academy of Sciences, 2001, 98(2): 694-699. [41] Jaiswal A, Nenonen J, Stenroos M, et al. Comparison of beamformer implementations for MEG source localization[J]. NeuroImage, 2020, 216: 1-41. [42] Westner BU, Dalal SS, Gramfort A, et al. A unified view on beamformers for M/EEG source reconstruction[J]. NeuroImage, 2022, 246: 1-11. [43] Potter LC, Ertin E, Parker JT, et al. Sparsity and compressed sensing in radar imaging[J]. Proceedings of the IEEE, 2010, 98(6): 1006-1020. [44] Nakasato N. Beginnings of the development of magnetoencephalography systems using superconducting and spintronics sensors[J]. Brain and Nerve, 2022, 74(11): 1295-1301. [45] Burg BR. The ideology of Richard mather and its relationship to english puritanism prior to 1660[J]. J Church St, 1967, 9: 364. [46] Mosher JC, Lewis PS, Leahy RM. Multiple dipole modeling and localization from spatio-temporal MEG data[J]. IEEE Transactions on Biomedical Engineering, 1992, 39(6): 541-557. [47] Mosher JC, Leahy RM. Recursive MUSIC: a framework for EEG and MEG source localization[J]. IEEE Transactions on Biomedical Engineering, 1998, 45(11): 1342-1354. [48] Van Hoey G, De Clercq J, Vanrumste B, et al. EEG dipole source localization using artificial neural networks[J]. Physics in Medicine Biology, 2000, 45(4): 997-1011. [49] Chowdhury RA, Pellegrino G, Aydin Ü, et al. Reproducibility of EEG-MEG fusion source analysis of interictal spikes: relevance in presurgical evaluation of epilepsy[J]. Human Brain Mapping, 2018, 39(2): 880-901. [50] Mäkelä N, Stenroos M, Sarvas J, et al. Truncated rap-music (trap-music) for MEG and EEG source localization[J]. NeuroImage, 2018, 167: 73-83. [51] Boasen J, Takeshita Y, Kuriki S, et al. Spectral-spatial differentiation of brain activity during mental imagery of improvisational music performance using MEG[J]. Frontiers in Human Neuroscience, 2018, 12: 1-12. [52] Deco G, Liebana Garcia S, Sanz Perl Y, et al. The effect of turbulence in brain dynamics information transfer measured with magnetoencephalography[J]. Communications Physics, 2023, 6(1): 74-81. [53] Hintze A, Adami C. Detecting information relays in deep neural networks[J]. Entropy (Basel), 2023, 25(3):401-418. [54] Barik K, Watanabe K, Bhattacharya J, et al. Functional connectivity based machine learning approach for autism detection in young children using MEG signals[J]. Journal of Neural Engineering, 2023, 20(2): 1-16. [55] Blinowska KJ, Baccala LA, Kaminski M, et al. Challenges to EEG/MEG graph analysis and how to face them[J]. Frontiers in Neuroscience, 2023, 17: 1-3. [56] Huang G, Liu K, Liang J, et al. Electromagnetic source imaging via a data-synthesis-based convolutional encoder-decoder network[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 1-15. [57] Cui S, Duan L, Gong B, et al. EEG source localization using spatio-temporal neural network[J]. China Communications, 2019, 16(7): 131-143. [58] Hecker L, Rupprecht R, Tebartz Van Elst L, et al. ConvDip: a convolutional neural network for better EEG source imaging[J]. Frontiers in Neuroscience, 2021, 15: 1-17. [59] Kumar N, Jaiswal A, Roy D, et al. Effective networks mediate right hemispheric dominance of human 40 Hz auditory steady-state response[J]. Neuropsychologia, 2023, 184: 1-20. [60] Pantazis D, Adler A. MEG source localization via deep learning[J]. Sensors, 2021, 21(13): 1-15. [61] Accogli A, Geraldo AF, Piccolo G, et al. Diagnostic approach to macrocephaly in children[J]. Frontiers in Pediatrics, 2022, 9: 1-31. [62] Soler A, Moctezuma LA, Giraldo E, et al. Automated methodology for optimal selection of minimum electrode subsets for accurate EEG source estimation based on genetic algorithm optimization[J]. Scientific Reports, 2022, 12(1): 1-18. [63] Nour MM, Liu Y, Arumuham A, et al. Impaired neural replay of inferred relationships in schizophrenia[J]. Cell, 2021, 184(16): 4315-4328. [64] Tait L, Özkan A, Szul MJ, et al. A systematic evaluation of source reconstruction of resting MEG of the human brain with a new high-resolution atlas: performance, precision, and parcellation[J]. Human Brain Mapping, 2021, 42(14): 4685-4707. [65] Hincapie AS, Kujala J, Mattout J, et al. The impact of MEG source reconstruction method on source-space connectivity estimation: a comparison between minimum-norm solution and beamforming[J]. Neuroimage, 2017, 156: 29-42. [66] Zhang K, Sun J, Sun Y, et al. Pretreatment source location and functional connectivity network correlated with therapy response in childhood absence epilepsy: a magnetoencephalography study[J]. Frontiers in Neurology, 2021, 12: 1-11. [67] Jiang W, Sun J, Xiang J, et al. Altered neuromagnetic activity in persistent postural-perceptual dizziness: a multifrequency magnetoencephalography study[J]. Frontiers in Human Neuroscience, 2022, 16: 1-9. |
[1] |
Ji Mengqi, Shi Yujie, Xue Zhiyuan, Zhong Fan, Jiang Rui, Zhang Junpeng. Progress in Application of Optically Pumped Magnetometers Magnetoencephalography[J]. Chinese Journal of Biomedical Engineering, 2023, 42(6): 730-739. |
[2] |
Ma Hengfen, Wu Yuntao, Zhao Wen, Jia Liping, Zhou Dandan. Research Progress of Magnetoencephalography in the Functional Mechanism of Bilingual Brain[J]. Chinese Journal of Biomedical Engineering, 2021, 40(4): 477-484. |
|
|
|
|