|
|
Research Status and Progress of Aquatic Animal Robots |
Peng Yong1,2,3#*, Zhang Hui1, Zhao Yang1, Zhao Zheng1, Wen Yudong1, Han Lingjun1 |
1(College of Electrical Engineering, Yanshan University, Qinhuangdao 066004, Hebei,China) 2(Key Laboratory of National Defense of Mechanical Structure and Materials Science under Extreme Conditions, Yanshan University, Qinhuangdao 066004, Hebei,China) 3(Institute of Marine Science and Engineering, Yanshan University, Qinhuangdao 066004, Hebei,China) |
|
|
Abstract Biological robot is the organism that is used by human to apply intervention signals to regulate the biological behaviors, which achieve the manipulation by human control technology. Biological robot integrates multi-disciplinary theories and technologies. Due to the unique advantages and outstanding features of aquatic animals, such as mobility, concealment of activities, environmental adaptability, and independent energy supply, aquatic animal robot is of scientific research significance and important practical application value. According to neuroscience theory and internationally commonly used biological control methods, this paper reviewed the control methods and mechanisms of aquatic animal robots from three aspects including stimulus receptors, nerve centers and effectors, and elaborated and analyzed the control methods of these three types of aquatic animal robots. Among them, brain control technology is the most effective and essential control method. In this paper, perspectives of the brain control technology and mechanism of aquatic robot were discussed as well.
|
Received: 01 June 2021
|
|
Corresponding Authors:
*E-mail: PY81@sina.com
|
About author:: #Member, Chinese Society of Biomedical Engineering |
|
|
|
[1] 彭勇,王爱迪, 王婷婷, 等.面向生物控制的鲤鱼脑组织及脑电极三维重建[J].生物医学工程杂志, 2020, 37: 885-891. [2] Nobutaka K, Masayuki Y, Noritaka M, et al. Artificial control of swimming in goldfish by brain stimulation: confirmation of the midbrain nuclei as the swimming center [J]. Neuroscience Letters, 2009, 452: 42-46. [3] Vinepinsky E, Donchin O, Segev R. Wireless electrophysiology of the brain of freely swimming goldfish [J]. Journal of Neuroscience Methods, 2017, 278: 76-86. [4] Lee S, Kim CH, Kim DG, et al. Remote guidance of untrained turtles by controlling voluntary instinct behavior[J]. PLoS ONE, 2013, 8: e61798. [5] Kim DG, Lee S, Kim CH, et al. Parasitic robot system for waypoint navigation of turtle[J]. Journal of Bionic Engineering, 2017, 14: 327-335. [6] Brown S. Stealth sharks to patrol the high seas [J]. New Scientist, 2006, 189: 30-31. [7] 苏晨旭. 鲨鱼运动行为诱导的基础研究[D]. 秦皇岛: 燕山大学, 2015. [8] Peng Y, Wu Y, Yang Y, et al. Study on the control of biological behavior on carp induced by electrophysiological stimulation in the corpus cerebelli[C]//2011 International Conference on Electronic & Mechanical Engineering and Information Technology. Harbin: IEEE 2011, 502-505. [9] 袁海. "间谍海龟"显身手[J]. 知识窗, 2006(1):59-59. [10] 苏学成, 槐瑞托, 杨俊卿,等. 控制动物机器人运动行为的脑机制和控制方法[J]. 中国科学:信息科学, 2012, 42: 1130-1146. [11] Flock Å. Ultrastructure and function in the lateral line organs [J]. Lateral Line Detectors, 1967, 12: 163-197. [12] Arnold K, Neumeyer C, Wavelength discrimination in the turtle Pseudemys scripta elegans [J]. Vision Res, 1987, 27: 1501-1511. [13] Kim CH, Choi B, Kim DG, et al. Remote navigation of turtle by controlling instinct behavior via human brain-computer interface[J]. Journal of Bionic Engineering, 2016, 13: 491-503. [14] 彭勇, 韩晓晓, 王婷婷, 等. 一种用于鲤鱼机器人的光刺激装置及光控实验方法[J]. 生物医学工程学杂志, 2018, 35: 720-726. [15] 彭勇, 赵洋, 张乾, 等. 不同波长的光对鲤鱼机器人运动行为影响的研究[J]. 生物医学工程学杂志, 2021, 38: 647-654. [16] Lehmkuhle MJ, Vetter RJ, Parikh H, et al. Implantable neural interfaces for characterizing population responses to odorants and electrical stimuli in the nurse shark, ginglymostoma cirratum [J]. Chemical Senses, 2006, 31: A14-A14. [17] Gomes W, Perez D, Catipovic J. Autonomous shark tag with neural reading and stimulation capability for open-ocean experiments [J]. Eos Trans Am Geophys Union, 2006, 87: 36-43. [18] 王文波, 戴振东. 动物机器人的研究现状与发展[J]. 机械制造与自动化, 2010, 39: 1-7. [19] Cohen L, Vinepinsky E, Segev R. Wireless electrophysiological recording of neurons by movable tetrodes in freely swimming fish [J]. Journal of Visualized Experiments, 2019, 153: 1-11. [20] Vinepinsky E, Cohen L, Perchik S, et al. Representation of edges, head direction, and swimming kinematics in the brain of freely-navigating fish [J]. Scientific Reports, 2020, 10: 1-16. [21] 张小栋, 李睿, 李耀楠. 脑控技术的研究与展望[J]. 振动、测试与诊断, 2014, 34:205-211. [22] Peng Y, Guo C, Su Y, et al. Study on the brain stereotaxic method of carp aquatic animal-robot[C]//The 2016 International Conference on Biomedical and Biological Engineering. Orlando: IEEE, 2016: 466-471. [23] 张慧,彭勇,闫艳红, 等. 一种面向鱼类控脑技术应用的固定装置及其方法[P]. 中国: CN113180873A, 2021-04-15. [24] 彭勇, 王婷婷, 王占秋, 等. 面向鲤鱼机器人控脑技术的磁共振坐标转换方法研究及应用[J]. 生物医学工程杂志, 2018, 35: 845-851. [25] 彭勇, 韩晓晓, 王婷婷, 等. 测试水生动物机器人运动的水迷宫[J]. 生物医学工程学杂志, 2018, 35: 429-434. [26] 彭勇, 王婷婷, 闫艳红, 等. 鲤鱼机器人无线遥控系统设计与应用[J]. 中国生物医学工程学报, 2019, 38: 431-437. [27] 刘哲. 水生动物机器人生物行为控制基础研究[D]. 秦皇岛:燕山大学, 2012. [28] 王子霖. 鲤鱼脑神经核团与骨骼肌对应关系研究[D]. 秦皇岛:燕山大学. [29] Nguyen HD, Tan PZ, Sato H, et al. Sideways walking control of a cyborg beetle[J]. IEEE Transactions on Medical Robotics and Bionics, 2020, 99: 1-1. [30] Xu Kedi, Zhang, Jiacheng, Zhou Hong, et al. A novel turning behavior control method for rat-robot through the stimulation of ventral posteromedial thalamic nucleus[J]. Behavioural Brain Research, 2016, 298: 150-157. [31] Bozkurt A, Gilmour R, Stern D, et al. MEMS based bioelectronic neuromuscular interfaces for insect cyborg flight control[C]// International Conference on Micro Electro Mechanical Systems. Tucson: IEEE, 2008, 1: 160-163. [32] 郭策, 戴振东, 孙久荣. 生物机器人的研究现状及其未来发展[J]. 机器人, 2005, 27: 187-192. |
[1] |
Peng Yong, Wang Tingting, Yan Yanhong, Chen Zhiwang, Wen Shuhuan, Han Xiaoxiao, Zhao Yang, Liu Jianing, Zhang Qian. Design and Application of the Wireless Remote Control System of Carp Robots[J]. Chinese Journal of Biomedical Engineering, 2019, 38(4): 431-437. |
|
|
|
|