|
|
Review of the Portable Fully Integrated Nucleic Acid Analysis System |
Li Nan1#, Xu Youchun1,2*, Cheng Jing1,2#* |
1(State Key Laboratory of Membrane Biology, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China) 2(National Engineering Research Center for Beijing Biochip Technology, Beijing 102206, China) |
|
|
Abstract Nucleic acid testing plays important roles in many fields, such as clinical diagnosis, public health, food safety, molecular breeding, and forensic identification. In standard nucleic acid testing laboratories, physically separated spaces are required for sample preparation, nucleic acid extraction, and amplification, and many manual operations and supporting equipment are involved, which makes the entire detection process tedious, inefficient, and prone to cross-contamination. Therefore, the trend of nucleic acid detection and analysis is to develop fully integrated and automated nucleic acid detection systems. With the development of microfluidic technology, it is now possible to construct a fully integrated portable nucleic acid analysis system to satisfy the needs of point-of-care testing and/or on-site detection. This article reviewed the technical characteristics of the fully integrated portable nucleic acid analysis system from the aspects of biotechnology and microfabrication technology, compared some fully integrated representative systems for nucleic acid analysis, and proposed its technical characteristics of multi-disciplinarity, diversification of technology paths, full integration and functional expansion. At the end of the article, we concluded the challenges of complex molecular diagnostic requirement, high requirement for rapid detection, fully automatic operation and low cost for the portable fully integrated nucleic acid detection system technology, as well as discussed the possible future development.
|
Received: 11 September 2021
|
|
Corresponding Authors:
* E-mail: xyc2012@tsinghua.edu.cn; jcheng@tsinghua.edu.cn
|
About author:: #Member, Chinese Society of Biomedical Engineering |
|
|
|
[1] 覃小梅. 分子诊断学在临床医学中的应用进展 [J]. 内科, 2011, 6(2): 155-157. [2] 谢兰,刘冉,冯娟,等. 中国分子诊断产业战略研究 [J]. 中国工程科学, 2017, 19(2): 29-36. [3] Zhao Yongxi, Zuo Xiaolei, Li Qian, et al. Nucleic acids analysis [J]. Sci China Chem, 2020: 1-33. [4] Zhu Na, Zhang Dingyu, Wang Wenling, et al. A novel coronavirus from patients with pneumonia in China, 2019 [J]. N Engl J Med, 2020, 382(8): 727-733. [5] Zhou Peng, Yang Xinglou, Wang Xianguang, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin [J]. Nature, 2020, 579(7798): 270-273. [6] Chen Hui, Liu Kengku, Li Zhao, et al. Point of care testing for infectious diseases [J]. Clin Chim Acta, 2019, 493: 138-147. [7] 席婧媛,于广鑫,钱相君,等. 新型冠状病毒实验室诊断技术进展 [J]. 分子诊断与治疗杂志, 2020, 12(3): 265-269. [8] Cobb B, Simon CO, Stramer SL, et al. The cobas(R) 6800/8800 System: a new era of automation in molecular diagnostics [J]. Expert Rev Mol Diagn, 2017, 17(2): 167-180. [9] Stevens WS, Scott L, Noble L, et al. Impact of the GeneXpert MTB/RIF technology on Tuberculosis control [J]. Microbiol Spectr, 2017, 5(1): TBTB2-0040-2016. [10] Vu CL, Chan Jianxiong, Todaro M, et al. Point-of-care molecular diagnostic devices an overview [J]. Pharmacogenomics, 2015, 16(12): 1399-1409. [11] Zumla A, Al-Tawfiq JA, Enne VI, et al. Rapid point of care diagnostic tests for viral and bacterial respiratory tract infections-needs, advances, and future prospects [J]. Lancet Infect Dis, 2014, 14(11): 1123-1135. [12] Sackmann EK, Fulton AL, Beebe DJ. The present and future role of microfluidics in biomedical research [J]. Nature, 2014, 507(7491): 181-189. [13] 彭年才,李磊,李政,等. 生物检测及分子诊断高端装备的研制及应用 [J]. 中国工程科学, 2013, 15(1): 57-62. [14] 杨宇,刘雅,谷岚,等. 全自动核酸分子诊断系统的现状与发展 [J]. 中国生物工程杂志, 2017, 37(3): 115-123. [15] Yin J, Suo Y, Zou Z, et al. Integrated microfluidic systems with sample preparation and nucleic acid amplification [J]. Lab Chip, 2019, 19(17): 2769-2785. [16] Thatcher SA. DNA/RNA preparation for molecular detection [J]. Clin Chem, 2015, 61(1): 89-99. [17] Basha IHK, Ho ETW, Yousuff CM, et al. Towards multiplex molecular diagnosis-a review of microfluidic genomics technologies [J]. Micromachines, 2017, 8(9): 266. [18] Islam MS, Aryasomayajula A, Selvaganapathy PR. A review on macroscale and microscale cell lysis methods [J]. Micromachines, 2017, 8(3): 83. [19] Birnboim HC, Doly J. A rapid alkaline extraction procedure for screening recombinant plasmid DNA [J]. Nucleic Acids Res, 1979, 7(6): 1513-1523. [20] Salazar O, Asenjo JA. Enzymatic lysis of microbial cells [J]. Biotechnol Lett, 2007, 29(7): 985-994. [21] Sharma R, Dill BD, Chourey K, et al. Coupling a detergent lysis/cleanup methodology with intact protein fractionation for enhanced proteome characterization [J]. J Proteome Res, 2012, 11(12): 6008-6018. [22] Hwang KY, Kwon SH, Jung SO, et al. Miniaturized bead-beating device to automate full DNA sample preparation processes for gram-positive bacteria [J]. Lab Chip, 2011, 11(21): 3649-3655. [23] Halstead FD, Lee AV, Couto-Parada X, et al. Universal extraction method for gastrointestinal pathogens [J]. J Med Microbiol, 2013, 62(Pt 10): 1535-1539. [24] de la Rosa C, Tilley PA, Fox JD, et al. Microfluidic device for dielectrophoresis manipulation and electrodisruption of respiratory pathogen Bordetella pertussis [J]. IEEE Trans Biomed Eng, 2008, 55(10): 2426-2432. [25] de Lange N, Tran TM, Abate AR. Electrical lysis of cells for detergent-free droplet assays [J]. Biomicrofluidics, 2016, 10(2): 024114. [26] Cheng Jing, Sheldon EL, Wu Lei, et al. Preparation and hybridization analysis of DNA/RNA from E. coli on microfabricated bioelectronic chips [J]. Nat Biotechnol, 1998, 16(6): 541-546. [27] Kim SA, Yoon JA, Kang MJ, et al. An efficient and reliable DNA extraction method for preimplantation genetic diagnosis: a comparison of allele drop out and amplification rates using different single cell lysis methods [J]. Fertil Steril, 2009, 92(2): 814-818. [28] Tsougeni K, Papadakis G, Gianneli M, et al. Plasma nanotextured polymeric lab-on-a-chip for highly efficient bacteria capture and lysis [J]. Lab Chip, 2016, 16(1): 120-131. [29] Yeung SW, Lee TM, Cai Hong, et al. A DNA biochip for on-the-spot multiplexed pathogen identification [J]. Nucleic Acids Res, 2006, 34(18): e118. [30] Ali N, Rampazzo RCP, Costa ADT, et al. Current nucleic acid extraction methods and their implications to point-of-care diagnostics [J]. Biomed Res Int, 2017, 2017: 9306564. [31] Rio DC, Ares M, Hannon GJ, et al. Purification of RNA using TRIzol (TRI reagent) [J]. Cold Spring Harb Protoc, 2010, 2010(6): pdb.prot5439. [32] Zhang Rui, Gong Haiqing, Zeng Xudong, et al. A microfluidic liquid phase nucleic acid purification chip to selectively isolate DNA or RNA from low copy/single bacterial cells in minute sample volume followed by direct on-chip quantitative PCR assay [J]. Anal Chem, 2013, 85(3): 1484-1491. [33] Adeli K, Ogbonna G. Rapid purification of human DNA from whole blood for potential application in clinical chemistry laboratories [J]. Clin Chem, 1990, 36(2): 261-264. [34] Feng Guodong, Jiang Luan, Wen Puhong, et al. A new ion-exchange adsorbent with paramagnetic properties for the separation of genomic DNA [J]. Analyst, 2011, 136(22): 4822-4829. [35] Vogelstein B, Gillespie D. Preparative and analytical purification of DNA from agarose [J]. Proc Natl Acad Sci USA, 1979, 76(2): 615-619. [36] Boom R, Sol CJ, Salimans MM, et al. Rapid and simple method for purification of nucleic acids [J]. J Clin Microbiol, 1990, 28(3): 495-503. [37] Melzak KA, Sherwood CS, Turner RF, et al. Driving forces for DNA adsorption to silica in perchlorate solutions [J]. J Colloid Interface Sci, 1996, 181(2): 635-644. [38] Mauk MG, Song Jinzhao, Liu Changchun, et al. Simple approaches to minimally-instrumented, microfluidic-based point-of-care nucleic acid amplification tests [J]. Biosensors, 2018, 8(1): 17. [39] Mullis K, Faloona F, Scharf S, et al. Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction [J]. Cold Spring Harb Symp Quant Biol, 1986, 51(Pt 1): 263-273. [40] Zhao Yongxi, Chen Feng, Li Qian, et al. Isothermal amplification of nucleic acids [J]. Chem Rev, 2015, 115(22): 12491-12545. [41] Bodulev OL, Sakharov IY. Isothermal nucleic acid amplification techniques and their use in bioanalysis [J]. Biochemistry (Mosc), 2020, 85(2): 147-166. [42] Notomi T, Okayama H, Masubuchi H, et al. Loop-mediated isothermal amplification of DNA [J]. Nucleic Acids Res, 2000, 28(12): E63. [43] Piepenburg O, Williams CH, Stemple DL, et al. DNA detection using recombination proteins [J]. PLoS Biol, 2006, 4(7): e204. [44] Fire A, Xu Siqun. Rolling replication of short DNA circles [J]. Proc Natl Acad Sci U S A, 1995, 92(10): 4641-4645. [45] Vincent M, Xu Yan, Kong Huimin. Helicase-dependent isothermal DNA amplification [J]. EMBO Rep, 2004, 5(8): 795-800. [46] Compton J. Nucleic acid sequence-based amplification [J]. Nature, 1991, 350(6313): 91-92. [47] Gilboa T, Garden PM, Cohen L. Single-molecule analysis of nucleic acid biomarkers - A review [J]. Anal Chim Acta, 2020, 1115: 61-85. [48] 廖珮宇,黄岩谊.分而治之--微液滴中的核酸分析化学研究 [J].中国科学: 化学, 2020, 50(10): 1439-1448. [49] Morley AA. Digital PCR: a brief history [J]. Biomol Detect Quantif, 2014, 1(1): 1-2. [50] Yuan Hao, Chao Youchuang, Shum HC. Droplet and microchamber-based digital loop-mediated isothermal amplification (dLAMP) [J]. Small, 2020, 16(9): e1904469. [51] Yin Juxin, Zou Zheyu, Hu Zhenming, et al. A "sample-in-multiplex-digital-answer-out" chip for fast detection of pathogens [J]. Lab Chip, 2020, 20(5): 979-986. [52] Bjorkesten J, Patil S, Fredolini C, et al. A multiplex platform for digital measurement of circular DNA reaction products [J]. Nucleic Acids Res, 2020, 48(13): e73. [53] Qin Zhen, Peng Ran, Baravik IK, et al. Fighting COVID-19 integrated micro and nanosystems for viral infection diagnostics [J]. Matter, 2020, 3(3): 628-651. [54] Navarro E, Serrano-Heras G, Castano MJ, et al. Real-time PCR detection chemistry [J]. Clin Chim Acta, 2015, 439: 231-250. [55] Aman R, Mahas A, Mahfouz M. Nucleic acid detection using CRISPR/Cas biosensing technologies [J]. ACS Synth Biol, 2020, 9(6): 1226-1233. [56] van Dongen JE, Berendsen JTW, Steenbergen RDM, et al. Point-of-care CRISPR/Cas nucleic acid detection:recent advances, challenges and opportunities [J]. Biosens Bioelectron, 2020, 166: 112445. [57] Choi JR, Hu Jie, Gong Yan, et al. An integrated lateral flow assay for effective DNA amplification and detection at the point of care [J]. Analyst, 2016, 141(10): 2930-2939. [58] D′Agata R, Spoto G. Surface plasmon resonance imaging for nucleic acid detection [J]. Anal Bioanal Chem, 2013, 405(2-3): 573-584. [59] Guo Ruiyan, Yin Fangfei, Sun Yudie, et al. Ultrasensitive simultaneous detection of multiplex disease-related nucleic acids using double-enhanced surface-enhanced Raman scattering nanosensors [J]. ACS Appl Mater Interfaces, 2018, 10(30): 25770-25778. [60] Haines AM, Tobe SS, Kobus HJ, et al. Properties of nucleic acid staining dyes used in gel electrophoresis [J]. Electrophoresis, 2015, 36(6): 941-944. [61] Liepold P, Wieder H, Hillebrandt H, et al. DNA-arrays with electrical detection: a label-free low cost technology for routine use in life sciences and diagnostics [J]. Bioelectrochemistry, 2005, 67(2): 143-150. [62] Ferapontova EE. DNA electrochemistry and electrochemical sensors for nucleic acids [J]. Annu Rev Anal Chem (Palo Alto Calif), 2018, 11(1): 197-218. [63] Trotter M, Borst N, Thewes R, et al. Review: electrochemical DNA sensing - principles, commercial systems, and applications [J]. Biosens Bioelectron, 2020, 154: 112069. [64] Karnaushenko D, Ibarlucea B, Lee S, et al. Light weight and flexible high-performance diagnostic platform [J]. Adv Healthc Mater, 2015, 4(10): 1517-1525. [65] Tang Xiaowu, Bansaruntip S, Nakayama N, et al. Carbon nanotube DNA sensor and sensing mechanism [J]. Nano Lett, 2006, 6(8): 1632-1636. [66] Zhan Beibei, Li Chen, Yang Jun, et al. Graphene field-effect transistor and its application for electronic sensing [J]. Small, 2014, 10(20): 4042-4065. [67] Deamer D, Akeson M, Branton D. Three decades of nanopore sequencing [J]. Nat Biotechnol, 2016, 34(5): 518-524. [68] Nehra A, Ahlawat S, Singh KP. A biosensing expedition of nanopore: a review [J]. Sens Actuators B, 2019, 284: 595-622. [69] Howorka S. Building membrane nanopores [J]. Nat Nanotechnol, 2017, 12(7): 619-630. [70] Wanunu M. Nanopores: a journey towards DNA sequencing [J]. Phys Life Rev, 2012, 9(2): 125-158. [71] Boyd-Moss M, Baratchi S, Di Venere M, et al. Self-contained microfluidic systems: a review [J]. Lab Chip, 2016, 16(17): 3177-3192. [72] Deng Jinqi, Jiang Xingyu. Advances in reagents storage and release in self-contained point-of-care devices [J]. Adv Mater Technol, 2019, 4(6): 1800625. [73] Du Nan, Chou Jie, Kulla E, et al. A disposable bio-nano-chip using agarose beads for high performance immunoassays [J]. Biosens Bioelectron, 2011, 28(1): 251-256. [74] Hitzbleck M, Delamarche E. Reagents in microfluidics: an ′in′ and ′out′ challenge [J]. Chem Soc Rev, 2013, 42(21): 8494-8516. [75] Thorsen T, Maerkl SJ, Quake SR. Microfluidic large-scale integration [J]. Science, 2002, 298(5593): 580-584. [76] Ramadan Q, Jafarpoorchekab H, Huang Chaobo, et al. NutriChip: nutrition analysis meets microfluidics [J]. Lab Chip, 2013, 13(2): 196-203. [77] Wang Yanlin, Li Qiaoyu, Shi Haimei, et al. Microfluidic Raman biochip detection of exosomes: a promising tool for prostate cancer diagnosis [J]. Lab Chip, 2020, 20(24): 4632-4637. [78] Chen Dafeng, Mauk M, Qiu Xianbo, et al. An integrated, self-contained microfluidic cassette for isolation, amplification, and detection of nucleic acids [J]. Biomed Microdevices, 2010, 12(4): 705-719. [79] Hoffmann J, Mark D, Lutz S, et al. Pre-storage of liquid reagents in glass ampoules for DNA extraction on a fully integrated lab-on-a-chip cartridge [J]. Lab Chip, 2010, 10(11): 1480-1484. [80] Gao Yang, Huo Weisong, Zhang Lei, et al. Multiplex measurement of twelve tumor markers using a GMR multi-biomarker immunoassay biosensor [J]. Biosens Bioelectron, 2019, 123: 204-210. [81] Liu RH, Yang Jianing, Lenigk R, et al. Self-contained, fully integrated biochip for sample preparation, polymerase chain reaction amplification, and DNA microarray detection [J]. Anal Chem, 2004, 76(7): 1824-1831. [82] Prescott JH, Lipka S, Baldwin S, et al. Chronic, programmed polypeptide delivery from an implanted, multireservoir microchip device [J]. Nat Biotechnol, 2006, 24(4): 437-438. [83] Stevenson CL, Santini Jr JT, Langer R. Reservoir-based drug delivery systems utilizing microtechnology [J]. Adv Drug Deliv Rev, 2012, 64(14): 1590-1602. [84] Chen Yiqi, Zhu Yunzeng, Shen Minjie, et al. Rapid and automated detection of six contaminants in milk using a centrifugal microfluidic platform with two rotation axes [J]. Anal Chem, 2019, 91(12): 7958-7964. [85] Lin YH, Wang SH, Wu MH, et al. Integrating solid-state sensor and microfluidic devices for glucose, urea and creatinine detection based on enzyme-carrying alginate microbeads [J]. Biosens Bioelectron, 2013, 43: 328-335. [86] Riahi R, Shaegh SA, Ghaderi M, et al. Automated microfluidic platform of bead-based electrochemical immunosensor integrated with bioreactor for continual monitoring of cell secreted biomarkers [J]. Sci Rep, 2016, 6: 24598. [87] Pinto IF, Caneira CR, Soares RR, et al. The application of microbeads to microfluidic systems for enhanced detection and purification of biomolecules [J]. Methods, 2017, 116: 112-124. [88] Herrmann A, Rodiger S, Schmidt C, et al. Spatial separation of microbeads into detection levels by a bioorthogonal porous hydrogel for size-selective analysis and increased multiplexity [J]. Anal Chem, 2019, 91(13): 8484-8491. [89] Song Jinzhao, Liu Changchun, Mauk MG, et al. A multifunctional reactor with dry-stored reagents for enzymatic amplification of nucleic acids [J]. Anal Chem, 2018, 90(2): 1209-1216. [90] Ghosh S, Ahn CH. Lyophilization of chemiluminescent substrate reagents for high-sensitive microchannel-based lateral flow assay (MLFA) in point-of-care (POC) diagnostic system [J]. Analyst, 2019, 144(6): 2109-2119. [91] Tonooka T. Microfluidic device with an integrated freeze-dried cell-free protein synthesis system for small-volume biosensing [J]. Micromachines, 2020, 12(1): 27. [92] Wentland L, Polaski R, Fu E. Dry storage of multiple reagent types within a paper microfluidic device for phenylalanine monitoring [J]. Anal Methods, 2021, 13(5): 660-671. [93] Li Bowei, Zhang Wei, Chen Lingxin, et al. A fast and low-cost spray method for prototyping and depositing surface-enhanced Raman scattering arrays on microfluidic paper based device [J]. Electrophoresis, 2013, 34(15): 2162-2168. [94] Sathish S, Ricoult SG, Toda-Peters K, et al. Microcontact printing with aminosilanes: creating biomolecule micro- and nanoarrays for multiplexed microfluidic bioassays [J]. Analyst, 2017, 142(10): 1772-1781. [95] Lee SH, Rho WY, Park SJ, et al. Multifunctional self-assembled monolayers via microcontact printing and degas-driven flow guided patterning [J]. Sci Rep, 2018, 8(1): 16763. [96] Ruggeri FS, Charmet J, Kartanas T, et al. Microfluidic deposition for resolving single-molecule protein architecture and heterogeneity [J]. Nat Commun, 2018, 9(1): 3890. [97] Liu Guoqiang, Hirtz M, Fuchs H, et al. Development of dip-pen nanolithography (DPN) and its derivatives [J]. Small, 2019, 15(21): e1900564. [98] Zhang Han, Smith E, Zhang Wei, et al. Inkjet printed microfluidic paper-based analytical device (muPAD) for glucose colorimetric detection in artificial urine [J]. Biomed Microdevices, 2019, 21(3): 48. [99] Dittrich PS, Tachikawa K, Manz A. Micro total analysis systems. Latest advancements and trends [J]. Anal Chem, 2006, 78(12): 3887-3908. [100] Foudeh AM, Fatanat Didar T, Veres T, et al. Microfluidic designs and techniques using lab-on-a-chip devices for pathogen detection for point-of-care diagnostics [J]. Lab Chip, 2012, 12(18): 3249-3266. [101] Wang Ping, Kricka LJ. Current and emerging trends in point-of-care technology and strategies for clinical validation and implementation [J]. Clin Chem, 2018, 64(10): 1439-1452. [102] Raja S, Ching J, Xi Liqiang, et al. Technology for automated, rapid, and quantitative PCR or reverse transcription-PCR clinical testing [J]. Clin Chem, 2005, 51(5): 882-890. [103] Czilwik G, Messinger T, Strohmeier O, et al. Rapid and fully automated bacterial pathogen detection on a centrifugal-microfluidic LabDisk using highly sensitive nested PCR with integrated sample preparation [J]. Lab Chip, 2015, 15(18): 3749-3759. [104] Xing Wanli, Wang Jiadao, Zhao Chao, et al. A highly automated mobile laboratory for on-site molecular diagnostics in the COVID-19 pandemic [J]. Clin Chem, 2021, 67(4): 672-683. [105] Spizz G, Young L, Yasmin R, et al. Rheonix CARD(®) technology: An innovative and fully automated molecular diagnostic device [J]. Point Care, 2012, 11(1): 42-51. [106] Poritz MA, Blaschke AJ, Byington CL, et al. FilmArray, an automated nested multiplex PCR system for multi-pathogen detection: development and application to respiratory tract infection [J]. PLoS ONE, 2011, 6(10): e26047. [107] Schmitz JE, Tang YW. The GenMark ePlex®: another weapon in the syndromic arsenal for infection diagnosis [J]. Future Microbiol, 2018, 13(16): 1697-1708. [108] 尤其敏,胡林,齐晨,等. 一种核酸一体化检测方法及检测试剂管 [P]. 中国专利: 108796038,2019-10-18. [109] 杭州优思达生物技术有限公司. 新型冠状病毒(2019-nCoV)即时分子诊断系统 [EB/OL].http://www.bioustar.com/intro/19.html, 2021-09-11/2022-01-06. |
[1] |
Luo Zhiming,Deng Guohao,Wang Zhubing,Zhang Yujie,Zhang Yang*,Wang Huanan,*. Research Progress of 3D Printing Organ-on-a-Chip[J]. Chinese Journal of Biomedical Engineering, 2022, 41(5): 589-601. |
[2] |
Liu Yan, Yang Qingzhen, Chen Xiaoming, Gu Fangwei, Zhang Hui. Fabrication of Organ-on-a-Chip by 3D Printing Technology[J]. Chinese Journal of Biomedical Engineering, 2020, 39(1): 97-108. |
|
|
|
|