|
|
Phenotype Analysis of Pathogenic Single Nucleotide Polymorphism of Susceptibility Gene TNNC1 with Hypertrophic Cardiomyopathy Based on Bioinformatics |
Li Jiangxi&, Zhang Shimei&, Wang Yuxing, Zhao Yue* |
(School of Basic Medical Sciences, Dali University, Dali 671000, Yunnan, China) |
|
|
|
Received: 02 June 2021
|
|
Corresponding Authors:
* E-mail: zy19860908@yeah.net
|
About author:: &Co-first author |
|
|
|
[1] Adamczak DM, Oko-Sarnowska Z. Sudden cardiac death in hypertrophic cardiomyopathy [J]. Cardiol Rev, 2018, 26(3):145-151. [2] Wu Haodi, Yang Huaxiao, Rhee JW, et al. Modelling diastolic dysfunction in induced pluripotent stem cell-derived cardiomyocytes from hypertrophic cardiomyopathy patients [J]. Eur Heart J, 2019, 40(45):3685-3695. [3] Cao T, Thongam U, Jin JP. Invertebrate troponin: insights into the evolution and regulation of striated muscle contraction [J]. Arch Biochem Biophys, 2019, 666:40-45. [4] Li MX, Hwang PM. Structure and function of cardiac troponin C (TNNC1): Implications for heart failure, cardiomyopathies, and troponin modulating drugs [J]. Gene, 2015, 571(2):153-166. [5] Veltri T, Landim-Vieira M, Parvatiyar MS, et al. Hypertrophic cardiomyopathy cardiac troponin C mutations differentially affect slow skeletal and cardiac muscle regulation [J]. Front Physiol, 2017, 8:221. [6] Parvatiyar MS, Landstrom AP, Figueiredo-Freitas C, et al. A mutation in TNNC1-encoded cardiac troponin C, TNNC1-A31S, predisposes to hypertrophic cardiomyopathy and ventricular fibrillation [J]. J Biol Chem, 2012, 287(38):31845-31855. [7] Jamali Z, Taheri-Anganeh M, Entezam M. Prediction of potential deleterious nonsynonymous single nucleotide polymorphisms of HIF1A gene: A computational approach [J]. Comput Biol Chem, 2020, 88:107354. [8] Tey HJ, Ng CH. Computational analysis of functional SNPs in Alzheimer's disease-associated endocytosis genes [J]. Peer J, 2019, 7:e7667. [9] Capriotti E, Fariselli P. PhD-SNPg: A webserver and lightweight tool for scoring single nucleotide variants [J]. Nucleic Acids Res, 2017, 45(W1):W247-W252. [10] Pejaver V, Urresti J, Lugo-Martinez J, et al. Inferring the molecular and phenotypic impact of amino acid variants with MutPred2 [J]. Nat Commun, 2020, 11(1):5918. [11] Wu Chenchen, Liu Shengtang, Zhang Shitong, et al. Molcontroller: A VMD graphical user interface featuring molecule manipulation [J]. J Chem Inf Model, 2020, 60 (10):5126-5131. [12] Akdel M, Durairaj J, de Ridder D, et al. Caretta-A multiple protein structure alignment and feature extraction suite[J]. Comput Struct Biotechnol J, 2020, 18: 981-992. [13] 崔力军, 李良, 李建华,等. COMT基因多态性及其他相关因素对精神分裂症患者攻击行为的影响[J]. 中国生物医学工程学报, 2020,39(5):636-640. [14] Schwarz JM, Rödelsperger C, Schuelke M, et al. Mutation Taster evaluates disease-causing potential of sequence alterations [J]. Nat Methods, 7(8):575-576. [15] Venter M, Malan L, van Dyk E, et al. Using MutPred derived mtDNA load scores to evaluate mtDNA variation in hypertension and diabetes in a two-population cohort: The SABPA study [J]. J Genet Genomics, 2017, 44(3):139-149. |
[1] |
Li Quanchi, Huang Xin, Luo Chengsi, Huang Huiquan, Rao Nini. Research on Intelligent Recognition Method of Common Arrhythmia Combining Traditionaland Deep Features of Single-Lead ECG[J]. Chinese Journal of Biomedical Engineering, 2022, 41(1): 31-40. |
[2] |
Zhang Peng, Zhang Junxia, Liu Ruiheng, Ahmed Mohamed Moneeb Elsabbagh. The Study of Lower Limb Motion Recognition Method Based on GA-RBF Neural Network andsEMG Signals[J]. Chinese Journal of Biomedical Engineering, 2022, 41(1): 41-47. |
|
|
|
|