|
|
Research Advancements on the Variation and Prediction of Brain Control Performance for Brain-Computer Interfaces (BCIs) |
Zheng Yufu1, Xu Minpeng1,2#*, Ming Dong1,2# |
1School of Precision Instrument and Opto-Electronics, Tianjin University, Tianjin 30072, China; 2Institute of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 30072, China |
|
|
Abstract Brain-computer interface (BCI) technology has attracted significant attention over recent decades, and has made remarkable progress. However, Brain control performance variations across and even within subjects severely degrade the reliability of BCI systems, which has become one of the most important challenges in the real-life application of brain-computer interfaces (BCIs). Understanding the underlying causes is essential to improve the stability of BCI systems, which could be approached by predicting BCI performance. Reliable prediction on individual’s ability to control BCIs can distinguish BCI illiteracy and can help eliminate the performance differences among users; while reliable prediction across trials for the same subject can help improve the whole BCI performance. This paper reviewed recent studies on the prediction of BCI performance, which laid emphasis on the BCI illiteracy and the causes of the BCI performance variation. It also provided some possible directions for future studies.
|
Received: 08 March 2018
|
|
|
|
|
[1] Wolpaw JR, Birbaumer N, Heetderks WJ, et al. Brain-computer interface technology: A review of the first international meeting [J]. IEEE Trans Rehabil Eng, 2000, 8(2):164-173. [2] Ahn M, Jun SC. Performance variation in motor imagery brain-computer interface: A brief review [J]. J Neurosci Methods, 2015, 243: 103-110. [3] Ang KK, Guan C, Phua KS, et al. Transcranial direct current stimulation and eeg-based motor imagery bci for upper limb stroke rehabilitation [J]. Conf Proc IEEE Eng Med Biol Soc, 2012, 2012(4):4128-4131. [4] Guger C, Daban S, Sellers E, et al. How many people are able to control a p300-based brain-computer interface (BCI)? [J]. Neuroscience Letters, 2009, 462(1): 94-98. [5] Gao Shangkai, Wang Yijun, Gao Xiaorong, et al. Visual and auditory brain-computer interfaces [J]. IEEE Trans Biomed Eng, 2014, 61 (5): 1436-1447. [6] Blankertz B, Müller KR, Krusienski DJ, et al. The BCI competition. Ⅲ: Validating alternative approaches to actual BCI problems [J]. IEEE Trans Neural Syst Rehabil Eng, 2006,14 (2): 153-159. [7] Jeunet C, Lotte F, Hachet M, et al. Impact of cognitive and personality profiles on mental-imagery based brain-computer interface-control performance [J]. International Journal of Psychophysiology, 2014, 94 (2): 189-189. [8] Nijholt A, Tan D, Pfurtscheller G, et al. Brain-computer interfacing for intelligent systems [J]. IEEE Intelligent Systems, 2008,23 (3):72-79. [9] Kübler A, Müller KR. An introduction to brain-computer interfacing [M]. Berlin: Technische Universität Berlin, 2007: 1-25. [10] Wan Feng, Da CJ, Nan Wenya, et al. Alpha neurofeedback training improves ssvep-based bci performance [J]. J Neural Eng, 2016, 13 (3): 036019. [11] Alkoby O, Aburmileh A, Shriki O, et al. Can we predict who will respond to neurofeedback? A review of the inefficacy problem and existing predictors for successfulEEG neurofeedback learning [J]. Neuroscience, 7 Jan, 2017 [Epub ahead of print]. [12] Busch NA, Dubois J, Vanrullen R. The phase of ongoing eeg oscillations predicts visual perception [J]. J Neurosci, 2009, 29 (24): 7869-7876. [13] Edlinger G, Allison B Z, Guger C. How Many People Can Use a BCI System? [M] // Clinical Systems Neuroscience. Tokyo: Springer, 2015: 33-66. [14] Allison BZ, Neuper C. Could anyone use a BCI [M]// Brain-Computer Interfaces. London:Springer, 2010: 35-54. [15] Dickhaus T, Sannelli C, Müller KR, et al. Predicting bci performance to study bci illiteracy [J]. BMC Neuroscience, 2009,10: 84. [16] Guger C, Edlinger G, Harkam W, et al. How many people are able to operate an eeg-based brain-computer interface (BCI)? [J]. IEEE Trans Neural Syst Rehabil Eng, 2003, 11 (2): 145-147. [17] Guger C, Allison BZ, Großwindhager B, et al. How many people could use an SSVEP BCI? [J]. Front Neurosci, 2012, 6 (169):1-6. [18] Kübler A, Neumann N, Kaiser J, et al. Brain-computer communication: Self-regulation of slow cortical potentials for verbal communication [J]. Arch Phys Med Rehabil, 2001,82 (11): 1533-1539. [19] Yao Lin, Sheng Xinjun, Mrachacz-Kersting N, et al. Performance of brain-computer interfacing based on tactile selective sensation and motor imagery [J]. IEEE Trans Neural Syst Rehabil Eng, 2018, 26 (1):60-68. [20] Jeunet C, Lotte F,Hachet M, et al. Predicting mental imagery-based bci performance from personality, cognitive profile and neurophysiological patterns [J]. PLoS ONE, 2015, 10 (12): e0143962. [21] Hammer EM, Kaufmann T, Kleih SC, et al. Visuo-motor coordination ability predicts performance with brain-computer interfaces controlled by modulation of sensorimotor rhythms (SMR) [J]. Front Hum Neurosci, 2014, 8: 574. [22] Randolph AB, Jackson MM, Karmakar S. Individual characteristics and their effect on predicting mu rhythm modulation [J]. International Journal of Human-Computer Interaction, 2010, 27 (1): 24-37. [23] Randolph A B. Not all created equal: individual-technology fit of brain-computer interfaces[C]//The 45th Hawaii International Conference on System Science (HICSS), Hawaii: IEEE, 2012: 572-578. [24] Volosyak I, Gembler F, Stawicki P. Age-related differences in ssvep-based BCI performance [J]. Neurocomputing, 2017, 250: 57-64. [25] Gembler F, Stawicki P, Volosyak I. A comparison of SSVEP-based BCI-performance between different age groups[C]//International Work-Conference on Artificial Neural Networks. Mallorca: Springer, 2015: 71-77. [26] Sprague SA, Mcbee M, Sellers EW. The effects of working memory on brain-computer interface performance [J]. Clin Neurophysiol, 2016, 127 (2): 1331-1341. [27] Kasahara K, Dasalla CS, Honda M, et al. Neuroanatomical correlates of brain-computer interface performance[J]. Neuroimage, 2015, 110: 95-100. [28] Halder S, Varkuti B, Bogdan M, et al. Prediction of brain-computer interface aptitude fr om individual brain structure [J]. Front Hum Neurosci, 2013,7 (14): 105. [29] Halder S, Agorastos D, Veit R, et al. Neural mechanisms of brain-computer interface control [J]. Neuroimage, 2011, 55 (4): 1779-1790. [30] Zhang Tao, Liu Tiejun, Li Fali, et al. Structural and functional correlates of motor imagery bci performance: Insights from the patterns of fronto-parietal attention network [J]. Neuroimage, 2016, 134: 475-485. [31] Leeb R, Lee F, Keinrath C, et al. Brain-computer communication: Motivation, aim, and impact of exploring a virtual apartment [J]. IEEE Trans Neural Syst Rehabil Eng, 2007,15 (4):473-482. [32] Kleih SC, Nijboer F, Halder S, et al. Motivation modulates the p300 amplitude during brain-computer interface use[J]. Clin Neurophysiol, 2010,121 (7): 1023-1031. [33] Myrden A, Chau T. Effects of user mental state on EEG-BCI performance [J]. Front Hum Neurosci, 2015, 9:308. [34] Maeder CL, Sannelli C, Haufe S, et al. Pre-stimulus sensorimotor rhythms influence brain-computer interface classification performance [J]. IEEE Trans Neural Syst Rehabil Eng, 2012,20 (5):653-662. [35] Grosse-Wentrup M. What are the causes of performance variation in brain-computer interfacing? [J]. International Journal of Bioelectromagnetism, 2011, 13(3):115-116. [36] Grossewentrup M, Schölkopf B, Hill J. Causal influence of gamma oscillations on performance in brain-computer interfaces [J]. Neuroimage, 2010,56 (2):837-842. [37] Grosse-Wentrup M. Fronto-parietal gamma-oscillations are a cause of performance variation in brain-computer interfacing[C]//The 5th International IEEE/EMBS Conference on Neural Engineering (NER). Cancun: IEEE, 2011: 384-387. [38] Ahn M, Ahn S, Hong JH, et al. Gamma band activity associated with bci performance: Simultaneous meg/eeg study [J]. Front Hum Neurosci, 2013,7 (848): 848. [39] Blankertz B, Sannelli C, Halder S, et al. Neurophysiological predictor of smr-based bci performance [J]. Neuroimage, 2010, 51(4): 1303-1309. [40] Ahn M, Cho H, Ahn S, et al. High theta and low alpha powers may be indicative of bci-illiteracy in motor imagery [J]. PLoS ONE, 2013,8 (11): e80886. [41] Bamdadian A, Guan C, Ang KK, et al. The predictive role of pre-cue EEG rhythms on MI-based BCI classification performance[J]. J Neurosci Methods, 2014,235 (10): 138-144. [42] Zhang Rui, Xu Peng, Chen Rrui, et al. Predicting inter-session performance of SMR-based brain-computer interface using the spectral entropy of resting-state eeg [J]. Brain Topogr, 2015, 28 (5):680-690. [43] Hammer EM, Halder S, Blankertz B, et al. Psychological predictors of SMR-BCI performance [J]. Biol Psychol, 2012, 89 (1):80-86. [44] Jeunet C, 'Kaoua BN, Hachet M, et al. Predicting mental-imagery based brain-computer interface performance from psychometric questionnaires[J]. Womencourage, 2015,1(1): 3-6. [45] Darvishi S, Abbott D, Baumert M. Prediction of motor imagery based brain computer interface performance using a reaction time test[C]//The 37th Annual International Conference of the IEEE EMBS (EMBC). Milan: IEEE, 2015: 2880-2883. [46] Grosse-Wentrup M, Schölkopf B. High γ-power predicts performance in sensorimotor-rhythm brain-computer interfaces [J]. J Neural Eng, 2012, 9(4):046001. [47] Fazli S, Mehnert J, Steinbrink J, et al. Using NIRS as a predictor for EEG-based BCI performance[C]// Conference Proceedings IEEE EMBS. San Diego: IEEE, 2012:4911-4914. [48] Carabalona R. The role of the interplay between stimulus type and timing in explaining BCI-illiteracy for visual p300-based brain-computer interfaces [J]. Front Neurosci, 2017, 11: 363. [49] Rivet B, Souloumiac A, Attina V, et al. Xdawn algorithm to enhance evoked potentials: Application to brain-computer interface [J]. IEEE Trans Biomed Eng, 2009, 56 (8):2035-2043. [50] Lenhardt A, Kaper M, Ritter HJ. An adaptive p300-based online brain-computer interface [J]. IEEE Trans Neural Syst Rehabil Eng, 2008, 16 (2): 121-130. [51] Dornhege G, Millán J DR, Hinterberger T, et al. Brain-computer interfaces for communication in paralysis: A clinical experimental approach [M].Toward Brain\|Computer Interfacing. Cambridge: MIT Press,2007: 43-64. [52] Mak JN, Mcfarland DJ, Vaughan TM, et al.EEG correlates of p300-based brain-computer interface(BCI) performance in people with amyotrophic lateral sclerosis [J]. J Neural Eng, 2012, 9 (2): 026014. [53] Halder S, Ruf CA, Furdea A, et al. Prediction of p300 bci aptitude in severe motor impairment [J]. PLoS ONE, 2013, 8 (10):e76148. [54] Halder S, Hammer EM, Kleih SC, et al. Prediction of auditory and visual p300 brain-computer interface aptitude [J]. PLoS ONE, 2013, 8 (2): e53513. [55] Kaufmann T, Vögele C, Sütterlin S, et al. Effects of resting heart rate variability on performance in the p300 brain-computer interface [J]. Int J Psychophysiol, 2012, 83 (3): 336-341. [56] Allison B, Luth T, Valbuena D, et al. Bci demographics: How many (and what kinds of) people can use an ssvep BCI? [J]. IEEE Trans Neural Syst Rehabil Eng, 2010, 18 (2): 107-116. [57] Jacobo FV, Pfaff HU, Rodríguez FB, et al. Assisted closed-loop optimization of ssvep-bci efficiency [J]. Front Neural Circuits, 2013,7 (9): 27. [58] Zhang Yangsong, Xu Peng, Guo Daqing, et al. Prediction of SSVEP-based BCI performance by the resting-state EEG network [J]. J Neural Eng, 2013,10 (6): 066017. [59] Vucˇkovic' A. Motor imagery questionnaire as a method to detect BCI illiteracy [C]// The 3rd International Symposium on Applied Sciences in Biomedical and Communication Technologies (ISABEL). Roma: IEEE, 2011: 1-5. [60] Vuckovic A, Osuagwu BA. Using a motor imagery questionnaire to estimate the performance of a brain-computer interface based on object oriented motor imagery [J]. Clin Neurophysiol, 2013,124 (8): 1586-1595. [61] Bamdadian A. Towards prediction and improvement of eeg-based mi-bci performance [D]. Singapore: National University of Singapore, 2014. |
[1] |
Zhang Qin, Guo Shengwen, Liang Xinling, Chen Yuanhan, Wu Yanhua, Fu Lei. Risk Prediction and Key Influence Factors Analysis ofAcute Kidney Injury in Inpatients[J]. Chinese Journal of Biomedical Engineering, 2019, 38(6): 702-710. |
[2] |
Yang Mengya, Hou Wen, Yang Peng, Zou Wenbin, Wang Tianfu, Lei Baiying. Joint and Deep Ensemble Regression of Clinical Scores for Alzheimer′s Disease Using Longitudinal andIncomplete Data[J]. Chinese Journal of Biomedical Engineering, 2019, 38(2): 166-175. |
|
|
|
|