|
|
Progress of Biological Combined Magneto-Photo-Acoustic Imaging Technologies |
Sun Zheng*,Li Yunzhan |
(Department of Electronic and Communication Engineering, North China Electric Power University, Baoding 071003, Hebei, China) |
|
|
Abstract Ultrasound (US), optical coherence tomography (OCT) and magnetic resonance imaging (MRI) are commonly used medical imaging technologies in clinics. Photoacoustic tomography (PAT) and magneto-acoustic (MA) imaging are newly emerged hybrid functional imaging modalities. By the combination of complementary imaging technologies, multimodal imaging techniques can image the target with higher precision and resolution than single image method, accurately identify pathological tissue and analyze the functional components qualitatively and quantitatively. This paper reviewed the progress of combined US-PAT, US-OCT, PAT-OCT, US-PAT-OCT, magneto-photo and magneto-photo-acoustic (MPA) imaging techniques, especially multimodal intravascular imaging techniques. The technical difficulties were discussed and the future directions were forecast as well.
|
Received: 02 June 2017
|
|
|
|
|
[1] Puliafito CA, Hu Jianming, Knighton RW, et al. Dual-band spectral-domain optical coherence tomography for in vivo imaging the spectral contrasts of the retinal nerve fiber layer[J]. Optics Express, 2011, 19(20):19653-19659. [2] Nam SY, Chung E, Suggs LJ, et al. Combined ultrasound and photoacoustic imaging to noninvasively assess burn injury and selectively monitor a regenerative tissue-engineered construct [J]. Tissue Eng Part C Methods, 2015, 21(6): 557-566. [3] Wang Lihong. Biomedical optics: Principles and imaging [M]//Photoacoustic Tomography. New Jersey: John Wiley and Sons, 2007:283-321. [4] Jansen K, Wu Min, van der Steen AFW, et al. Photoacoustic imaging of human coronary atherosclerosis in two spectral bands[J]. Photoacoustics, 2014, 2(1): 12-20. [5] 孙正,苑园,王健健. 血管内光声成像的研究进展[J]. 中国生物医学工程学报, 2015,34(2):221-228. [6] 张亚奇. 基于光声技术的多模态血管内成像导管的设计研究[D]. 昆明:云南大学, 2016. [7] Spiliopoulos S, Kitrou P, Katsanos K, et al. FD-OCT and IVUS intravascular imaging modalities in peripheral vasculature[J]. Expert Rev Med Devices, 2017, 14(2): 127-134. [8] Eom J, Shin JG, Park S, et al. All optical fiber combined-imaging system of photoacoustic and optical coherence tomography[C]//Proceedings of SPIE Photons Plus Ultrasound: Imaging and Sensing. Bellingham: SPIE, 2016:97084D. [9] Leissholzinger E, Bauermarschallinger J, Berer T. Multimodal non-contact photoacoustic imaging and optical coherence tomography using all optical detection[C]// Proceedings of SPIE Multimodal Biomedical Imaging XII. San Francisco: SPIE, 2017:100570I. [10] Jonghyun E, Geun SJ, Soongho P, et al. An all-fiber-optic combined system of noncontact photoacoustic tomography and optical coherence tomography[J]. Sensors, 2016, 16(5): E734. [11] Chen Zhongjiang, Yang Sihua, Wang Yi, et al. All-optically integrated photo-acoustic microscopy and optical coherence tomography based on a single Michelson detector[J]. Optics Letters, 2015, 40(12):2838-2841. [12] Berer T, Leiss-Holzinger E, Hochreiner A, et al. Multimodal non-contact photoacoustic and OCT imaging using a fiber based approach[J]. Photons Plus Ultrasound: Imaging and Sensing, 2014, 8943(15): 131-135. [13] Wang Yi, Li Chunhui, Wang RK. Noncontact photoacoustic imaging achieved by using a low-coherence interferometer as the acoustic detector[J]. Optics Letters, 2011, 36(20): 3975-3977. [14] Carp SA, Guerra A, Duque SQ. Optoacoustic imaging using interferometric measurement of surface displacement[J]. Applied Physics Letters, 2004, 85(23): 5772-5774. [15] Thormas B, Armin H, Saeid Z, et al. Remote photoacoustic imaging on solid material using a two-wave mixing interferometer[J]. Optics Letters, 2010, 35(24): 4151-4153. [16] Liu Jun, Tang Zhilie, Tang Hongchun, et al. Noncontact photoacoustic tomography imaging using a low-coherence interferometer with rapid detection of phase modulation[J]. Biomedical Optics Express, 2013, 4(11): 2322-2331. [17] Zhang EZ, Povazay B, Laufer J, et al. Multimodal photoacoustic and optical coherence tomography scanner using an all optical detection scheme for 3D morphological skin imaging[J]. Biomedical Optics Express, 2011, 2(8):2202-2215. [18] Zabihian B, Weingast J, Liu Mengyang, et al. In vivo dual-modality photoacoustic and optical coherence tomography imaging of human dermatological pathologies[J]. Biomedical Optics Express, 2015, 170(9):3163-3178. [19] Elisabeth LH, Johannes BM, Armin H, et al. Dual modality noncontact photoacoustic and spectral domain OCT imaging[J]. Ultrasonic Imaging, 2016, 38(1):19-31. [20] Chen Zhongjiang, Yang Sihua, Xing Da. Optically integrated trimodality imaging system: combined all-optical photoacoustic microscopy, optical coherence tomography, and fluorescence imaging[J]. Optics Letters, 2016, 41(7):1636-1639. [21] Berer T, Leiss-Holzinger E, Hochreiner A, et al. Multimodal noncontact photoacoustic and optical coherence tomography imaging using wavelength-division multiplexing[J]. Journal of Biomedical Optics, 2015, 20(4): 46013. [22] Elbau P, Mindrinos L, Scherzer O. Inverse problems of combined photoacoustic and optical coherence tomography[J]. Mathematical Methods in the Applied Sciences, 2016, 40(3):505-522. [23] 陈海宇. 激光成像技术诊断心血管疾病的实验研究[D]. 福州:福建医科大学, 2011. [24] Song Wei, Wei Qing, Jiao Shuliang, et al. Integrated photoacoustic ophthalmoscopy and spectral-domain optical coherence tomography[J]. Journal of Visualized Experiments, 2013, 71: e4390. [25] Vanderlaan D, Karpiouk A, Yeager D, et al. System and integrated catheter for real-time intravascular ultrasound and photoacoustic imaging[C]// Proceedings of 2014 IEEE Ultrasonics Symposium (IUS). Chicago: IEEE, 2014:1591-1594. [26] Vanderlaan D, Karpiouk A, Yeager D, et al. Real-Time intravascular ultrasound and photoacoustic imaging[J]. IEEE Transactions on Ultrasonics Ferroelectrics & Frequency Control, 2017, 64(1):141-149. [27] Zeng Yaguang, Xing Da, Wang Yi, et al. Photoacoustic and ultrasonic coimage with a linear transducer array[J]. Optics Letters, 2004, 29(15): 1760-1762. [28] Park S, Shah J, Aglyamov SR, et al. Integrated system for ultrasonic, elasticity and photoacoustic imaging[C]//Proceedings of SPIE International Conference on Medical Imaging 2006: Ultrasonic Imaging and Signal Processing. San Diego: SPIE, 2006, 6147: 61470H. [29] Emelianov SY, Aglyamov SR, Karpiouk AB, et al. 1E-5 synergy and applications of combined ultrasound, elasticity, and photoacoustic imaging[C]// Proceedings of 2006 IEEE Ultrasonics Symposium(IUS). Vancouver: IEEE Press, 2006: 405-415. [30] Jansen K, Van Soest G, Van Der Steen AFW. Intravascular photoacoustic imaging: a new tool for vulnerable plaque identification[J]. Ultrasound in Medicine & Biology, 2014, 40(6): 1037-1048. [31] Bui NQ, Hlaing KK, Nguyen VP, et al. Intravascular ultrasonic-photoacoustic (IVUP) endoscope with 2.2-mm diameter catheter for medical imaging[J]. Computerized Medical Imaging and Graphics, 2015, 45: 57-62. [32] Piao Zhonglie, Ma Teng, Li Jiawen, et al. High speed intravascular photoacoustic imaging with fast optical parametric oscillator laser at 1.7 μm[J]. Applied Physics Letters, 2015, 107(8): 083701. [33] Sethuraman S, Aglymov SR, Amirian JH, et al. Intravascular photoacoustic imaging using an IVUS imaging catheter[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2007, 54(5):978-986. [34] Hsieh BY, Chen Sungliang, Ling Tao, et al. All-optical scan head for ultrasound and photoacoustic imaging—imaging mode switching by dichroic filtering[J]. Photoacoustics, 2014, 2(1): 39-46. [35] Hsieh BY, Chen Sungliang, Ling Tao, et al. All-optical transducer for ultrasound and photoacoustic imaging by dichroic filtering[C]// Proceedings of 2012 IEEE Ultrasonics Symposium (IUS). Piscataway: IEEE Press, 2012: 1410-1413. [36] Hou Yang, Kim JS, Huang Shengwen, et al. Characterization of a broadband all-optical ultrasound transducer-from optical and acoustical properties to imaging[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2008, 55(8): 1867-1877. [37] Xie Zhixing, Chen Sungliang, Ling Tao, et al. Pure optical photoacoustic microscopy[J]. Optics Express, 2011, 19(10): 9027-9034. [38] Zhang EZ, Beard PC. A miniature all-optical photoacoustic imaging probe[C]// Proceedings of SPIE International Conference on Photons Plus Ultrasound: Imaging and Sensing. Bellingham: SPIE, 2011, 7899: 78991F-1-78991F-6. [39] Laufer JG, Zhang EZ, Treeby BE, et al. In vivo preclinical photoacoustic imaging of tumor vasculature development and therapy[J]. Journal of Biomedical Optics, 2012, 17(5): 0560161-0560168. [40] Bouchard R, Sahin O, Emelianov S. Ultrasound-guided photoacoustic imaging: current state and future development[J]. IEEE Transactions on Ultrasonics Ferroelectrics & Frequency Control, 2014, 61(3):450-466. [41] Zhang Jian, Yang Sihua, Ji Xuanrong, et al. Characterization of lipid-rich aortic plaques by intravascular photoacoustic tomography: Ex vivo and in vivo validation in a rabbit atherosclerosis model with histologic correlation[J]. Journal of the American College of Cardiology, 2014, 64(4):385-390. [42] Kruger RA, Lam RB, Reinecke DR, et al. Photoacoustic angiography of the breast[J]. Medical Physics, 2010, 37(11):6096-6100. [43] Dalamaga M, Christodoulatos GS. Adiponectin as a biomarker linking obesity and adiposopathy to hematologic malignancies[J]. Hormone Molecular Biology & Clinical Investigation, 2015, 23(1):5-20. [44] Wang Yating, Xu Dong, Yang Sihua, et al. Toward in vivo biopsy of melanoma based on photoacoustic and ultrasound dual imaging with an integrated detector[J]. Biomedical Optics Express, 2016, 7(2):279-286. [45] Li Jiawen, Ma Teng, Jing J, et al. Back-to-back optical coherence tomography-ultrasound probe for co-registered three-dimensional intravascular imaging with real-time display[C]// Proceedings of SPIE International Conference on Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XVIII. San Francisco: SPIE, 2014, 8934: 893428-1-893428-7. [46] Costopoulos C, Brown AJ, Teng Zhongzhao, et al. Intravascular ultrasound and optical coherence tomography imaging of coronary atherosclerosis[J]. International Journal of Cardiovascular Imaging, 2016, 32(1):189-200. [47] Yin Jiechen, Li Xiang, Jing J, et al. Novel combined miniature optical coherence tomography ultrasound probe for in vivo intravascular imaging[J]. Journal of Biomedical Optics, 2011, 16(6):060605. [48] Matthews SD, Frishman WH. A review of the clinical utility of intravascular ultrasound and optical coherence tomography in the assessment and treatment of coronary artery disease[J]. Cardiology in Review, 2017, 25(2):68-76. [49] Li Xiang, Li Jiawen, Jing J, et al. Integrated IVUS-OCT imaging for atherosclerotic plaque characterization[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(2):196-203. [50] Li Jiawen, Minami H, Steward E, et al. Optimal flushing agents for integrated optical and acoustic imaging systems[J]. Journal of Biomedical Optics, 2015, 20(5): 56005. [51] Liang Shanshan, Ma Teng, Jing J, et al. Trimodality imaging system and intravascular endoscopic probe: combined optical coherence tomography, fluorescence imaging and ultrasound imaging[J]. Optics Letters, 2014, 39(23):6652-6655. [52] Chen Zhongping. Development of integrated multimodality intravascular imaging system for assessing and characterizing atherosclerosis[M]//Optical Coherence Tomography: Technology Aplications. New York: Springer,2015:2173-2188. [53] Weber C, Noels H. Atherosclerosis: current pathogenesis and therapeutic options.[J]. Nature Medicine, 2011, 17(11):1410-1422. [54] 李佳纹,陈忠平. 基于光学系统的血管内高集成多模态成像技术[J]. 中国激光, 2016, 43(12):1200001-1-1200001-13. [55] 冷吉,林日强,龚小竞,等. 基于0.9mm导管内光声/超声/OCT三模态成像技术[J]. 中国激光医学杂志, 2016, 25(5):66-67. [56] Yang Yi, Li Xiang, Wang Tianheng, et al. Integrated optical coherence tomography, ultrasound and photoacoustic imaging for ovarian tissue characterization[J]. Biomedical Optics Express, 2011, 2(9):2551-2561. [57] Jokerst JV, Cole AJ, Sompel DVD, et al. Gold nanorods for ovarian cancer detection with photoacoustic imaging and resection guidance via raman imaging in living mice[J]. Acs Nano, 2012, 6(11):10366-10377. [58] 郑磊. 光声成像采集系统设计与实现[D].哈尔滨:哈尔滨工业大学, 2010. [59] Xu JS, Huang Jiwei, Qin Ruogu, et al. Synthesizing and binding dual-mode poly (lactic-co-glycolic acid) (PLGA) nanobubbles for cancer targeting and imaging[J]. Biomaterials, 2010, 31(7):1716-1722. [60] Jefferson A, Wijesurendra RS, Mcateer MA, et al. Molecular imaging with optical coherence tomography using ligand-conjugated microparticles that detect activated endothelial cells: rational design through target quantification[J]. Atherosclerosis, 2011, 219(2):579-587. [61] Kim J, Ahmad A, Marjanovic M, et al. Magnetomotive optical coherence tomography for the assessment of atherosclerotic lesions using αvβ3 integrin-targeted microspheres[J]. Molecular Imaging and Biology, 2014, 16(1):36-43. [62] Lin Yuting, Gao Hao, Thayer D, et al. Photo-magnetic imaging: resolving optical contrast at MRI resolution[J]. Physics in Medicine & Biology, 2013, 58(11):3551-3562. [63] Qu Min, Mallidi S, Mehrmohammadi M, et al. Magneto-photo-acoustic imaging[J]. Biomedical Optics Express, 2011, 2(2):385-396. [64] Li Junwei, Arnal B, Wei Chenwei, et al. Magneto-optical nanoparticles for cyclic magnetomotive photoacoustic imaging[J]. ACS Nano, 2015, 9(2):1964-1976. [65] 林小平, 彭洪波, 杨震华. 经直肠超声联合前列腺特异性抗原检测诊断前列腺癌的价值[J]. 现代医院, 2017, 17(6):920-921. [66] Zhao Jing, Luo Guoping, Yao Zhijian, et al. Depression discrimination using fMRI and DTI data by wavelet based fusion scheme[J]. 东南大学学报(英文版), 2012, 28(1):25-28. [67] Cichocki A, Zdunek R, Choi S, et al. Non-negative tensor factorization using alpha and beta divergences[C]// Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing. Hawaii: IEEE, 2007:1393-1396. [68] Wu Guibo, Zhang Lijun, Lu Hui, et al. An improved frequency estimation algorithm based on multi-segment signal fusion[J]. Journal of Data Acquisition and Processing, 2012, 27 (3): 304-308. [69] 叶钒, 何峰, 朱炬波,等. 基于几何绕射模型的多频带信号融合新方法[J]. 信号处理, 2010, 26(9):1361-1365. [70] Rouquette S, Najim M. Estimation of frequencies and dampingfactors by two-dimensional ESPRIT type methods[J]. IEEE Transactions on Signal Processing, 2001,49(1):237-245. [71] 叶钒,何峰,梁甸农. 基于EMEMP的雷达二维信号融合成像新方法[J]. 电子学报, 2009,37(12):2609-2613. [72] 王凯. 双路声光信号融合数字实现方法及技术研究[D]. 成都:电子科技大学, 2012. |
[1] |
Du Yigang,Liu Dejie,Shen Yingying,Zhu Lei,He Xujin,Chen Siping. Measurements of Wall Shear Stress for Blood Vessel and its Progress in Clinical Research[J]. Chinese Journal of Biomedical Engineering, 2018, 37(5): 593-605. |
[2] |
Yang Yang, Meng Jie, Wen Tao, Chen Bo, Liu Fei, Gu Ning, Xu Haiyan, Yu Wei, Liu Jian. The Preparation of uPAR-Targeted MRI Probe and its Targetability to Breast Cancer Cells[J]. Chinese Journal of Biomedical Engineering, 2018, 37(4): 481-488. |
|
|
|
|