|
|
Research Progress on Compliance Property of Endovascular Stent Graft |
Guan Ying1 Guan Guoping1,2 Lin Jing1,2 Wang Lu 1, 2#* |
1Donghua University, College of Textiles, Shanghai 201620, China 2Key Laboratory of Textile Science & Technology, Ministry of Education, 201620, China |
|
|
Abstract Compliance mismatch between small diameter vascular graft and host artery is the main factor caused low long-term patency rate. There are literatures proving that compliance mismatch between endovascular stent graft and host artery is the main reason caused the long-term complications, such as SG displacement, endoleaks and blood turbulence. However there is only limited number of studies in this area at present. This article reviewed the methods of evaluating compliance of SG, including calculating via pressure range and corresponding SG volume change or reflecting indirectly by pulse wave velocity and aneurysm pressure. Researches on SG compliance mainly include verifying effects of SG implantation on host artery, effects of different SG structures on host artery, and how compliance changing over time. Achieving compliant SG by optimizing SG structure is reviewed briefly.
|
Received: 29 March 2016
|
|
|
|
|
[1] 赵志芳,李光华. 影响动脉血管顺应性的因素及机制[J]. 当代医学, 2011, 17(32): 13-14. [2] Lucereau B, Koffhi F, Heim F, et al. Relation between tensile tests and compliance in polyester textile vascular prostheses[J]. Ann Vasc Surg, 2015, 29(6):1300-1306. [3] Nezarati RM, Eifert MB, Dempsey DK, et al. Electrospun vascular grafts with improved compliance matching to native vessels[J]. J Biomed Mater Res B, 2015, 103(2):313-323. [4] Khoffi F, Mathieu D, Dieval F, et al. Compliance properties of collagen-coated polyethylene terephthalate vascular prostheses[J]. J Appl Biomater Func, 2014, 12(3):163-171. [5] Catto V, Fare S, Cattaneo I, et al. Small diameter electrospun silk fibroin vascular grafts: Mechanical properties, in vitro biodegradability, and in vivo biocompatibility[J]. Mat Sci Eng C-Mater, 2015, 54:101-111. [6] 王璐,丁辛. 人造血管的生物力学性能表征[J]. 纺织学报, 2003, 24(1): 7-9. [7] 关颖,关国平,林婧,等. 小口径人工血管顺应性的影响因素和改善方法[J]. 材料导报, 2014, 28(19): 125-129. [8] Mensel B, Kuhn JP, Hoene A, et al. Endovascular repair of arterial iliac vessel wall lesions with a self-expandable nitinol stent graft system[J]. PLoS One, 2014, 9(8):e103980. [9] Aziz A, Sicard GA. Surgical management of abdominal aortic aneurysms: a lost art?[J].Prog Cardiovasc Dis, 2013, 56(1):13-18. [10] Wang Siwen, Wang Jinsong, Lin Peiliang, et al. Short-term curative effect of endovascular stent-graft treatment for aortic diseases in China: a systematic review[J]. PLoS One, 2013, 8(8):e71012. [11] Buckley CJ, Buckley SD. Limitations of current EVAR endografts and potential solutions for their deficiencies[J]. Semin Vasc Surg, 2012, 25(3):136-137. [12] Mehta M, Sternbach Y, Taggert JB, et al. Long-term outcomes of secondary procedures after endovascular aneurysm repair[J]. J Vasc Surg, 2010, 52(6):1442-1449. [13] Rodrigues A, Figueiredo L, Bordado J. Abrasion behaviour of polymeric textiles for endovascular stent-grafts[J]. Tribol Int, 2013, 63:265-274. [14] Demanget N, Duprey A, Badel P, et al. Finite element analysis of the mechanical performances of 8 marketed aortic stent-grafts[J]. J Endovasc Ther, 2013, 20(4):523-535. [15] Morris L, Stefanov F, McGloughlin T. Stent graft performance in the treatment of abdominal aortic aneurysms: the influence of compliance and geometry[J]. J Biomech, 2013, 46(2):383-395. [16] Harris PL, Vallabhaneni SR, Desgranges P,et al. Incidence and risk factors of late rupture, conversion, and death after endovascular repair of infrarenal aortic aneurysms: The EUROSTAR experience[J]. J Vasc Surg, 2000, 32(4):739-749. [17] Becker GJ, Kovacs M, Mathison MN, et al. Risk stratification and outcomes of transluminal endografting for abdominal aortic aneurysm: 7\|year experience and long-term follow-up[J]. J Vasc Interv Radiol, 2001, 12(9):1033-1046. [18] Hinchliffe RJ, Ivancev K. Endovascular aneurysm repair: current and future status[J]. Cardiovasc Interv Radiol, 2008, 31(3):451-459. [19] Laturnus J, Oliveira N, Basto Goncalves F, et al. Towards individualized follow-up protocols after endovascular aortic aneurysm repair[J]. J Cardiovasc Surg, 2016, 57(2):242-247. [20] Zhou SSN, How V, Vallabhaneni SR. Comparison of the fixation strength of standard and fenestrated stent-grafts for endovascular abdominal aortic aneurysm repair[J]. J Endovasc Ther, 2007, 14(2):168-175. [21] Roos H, Ghaffari M, Falkenberg M, et al. Displacement forces in iliac landing zones and stent graft interconnections in endovascular aortic repair: an experimental study[J]. Eur J Vasc Endovasc Surg, 2014, 47(3):262-267. [22] Heikkinen MA, Alsac JM, Arko FR, et al. The importance of iliac fixation in prevention of stent graft migration[J]. J Vasc Surg, 2006, 43(6):1130-1137. [23] Resch T, Malina M, Lindblad B,et al. The impact of stent design on proximal stent-graft fixation in the abdominal aorta: an experimental study [J]. Eur J Vasc Endovasc Surg, 2000, 20(2):190-195. [24] Sun Z. Transrenal fixation of aortic stent-grafts Current status and future directions[J]. J Endovasc Ther, 2004, 11(5):539-549. [25] Malina M, Lindblad B, Ivancev K, et al.. Endovascular AAA exclusion will stents with hooks and barbs prevent stent-graft migration[J]. J Endovasc Ther, 1998, 5(4):310-317. [26] Weidman JM, Desai M, Iftekhar A, et al. Engineering goals for future thoracic endografts-how can we make them more effective?[J].Prog Cardiovasc Dis, 2013, 56(1):92-102. [27] Singh C, Wang X. A biomimetic approach for designing stent-graft structures: Caterpillar cuticle as design model[J]. J Mech Behav Biomed Mater, 2014, 30:16-29. [28] Vlachopoulos C, Aznaouridis K, Stefanadis C. Prediction of cardiovascular events and all-cause mortality with arterial stiffness: a systematic review and meta-analysis[J]. J Am Coll Cardiol, 2010, 55:1318-1327. [29] Santos IC, Rodrigues A, Figueiredo L, et al. Mechanical properties of stent-graft materials[J]. P I Mech Eng L-J Mat, 2012, 226(4):330-341. [30] Kleinstreuer C, Li Z, Basciano CA, et al. Computational mechanics of nitinol stent grafts[J]. J Biomech, 2008, 41(11):2370-2378. [31] Morris L, Stefanov F, Hynes N, et al. An experimental evaluation of device/arterial wall compliance mismatch for four stent-graft devices and a multi-layer flow modulator device for the treatment of abdominal aortic aneurysms[J]. Eur J Vasc Endovasc, 2016, 51(1):44-55. [32] Cardiovascular implants-tubular vascular prostheses:BS ISO 7198[S].1998. [33] Bosman WMPF, Hinnen JW, Rixen DJ, et al. Effect of stent-graft compliance on endotension after EVAR [J]. J Endovasc Ther, 2009, 16(1): 105-113. [34] Hélène Vernhet RD. Changes in wall mechanics after endovascular stenting in the rabbit aorta comparison of three stent designs[J]. Am J Roentgenol, 2001, 176(3):803-807. [35] Rolland PH, Mekkaoui C, Vidal V, et al. Compliance matching stent placement in the carotid artery of the swine promotes optimal blood flow and attenuates restenosis[J]. Eur J Vasc Endovasc Surg, 2004, 28(4):431-438. [36] Weston MW, Rhee K, Tarbell JM. Compliance and diameter mismatch affect the wall shear rate distribution near an end-to-end anastomosis[J]. Journal of Biomech, 1996, 29(2):187-198. [37] Ballyk PD, Walsh C, Butany J, et al. Compliance mismatch may promote graft-artery intimal hyperplasia by altering suture-line stresses[J].J Biomech, 1998, 31(3):229-237. [38] Inoguchi H, Kwon IK, Inoue E,et al. Mechanical responses of a compliant electrospun poly(L-lactide-co-epsilon-caprolactone) small-diameter vascular graft[J]. Biomaterials, 2006, 27(8):1470-1478. [39] Vernhet H, Juan JM, Demaria R, et al. Acute changes in aortic wall mechanical properties after stent placement in rabbits[J]. J Vasc Interv Radiol. 2000, 11(5):634-638. [40] Berry JL, Manoach E, Mekkaoui C,et al. Hemodynamics and wall mechanics of a compliance matching stent: In vitro and in vivo analysis[J]. J Vasc Interv Radiol, 2002, 13(1):97-105. [41] Rachev A, Manoach E, Berry J, et al. A model of stress-induced geometrical remodeling of vessel segments adjacent to stents and artery/graft anastomoses[J]. J Theor Biol, 2000, 206(3):429-443. [42] Farhatnia Y, Pang JH, Darbyshire A, et al. Next generation covered stents made from nanocomposite materials: a complete assessment of uniformity, integrity and biomechanical properties[J]. Nanomed-Nanotechnol, 2016, 12(1):1-12. [43] Yazdani SK, Moore JE, Berry JL, et al. DPIV measurements of flow disturbances in stented artery models: adverse affects of compliance mismatch[J]. J Biomech Eng, 2004, 126(5):559-566. [44] 刘修健,蔺嫦燕. 冠脉分叉病变及支架后再狭窄的血流动力学研究进展[J]. 中国生物医学工程学报, 2012, 31(3):446-450. [45] Martin H, Grabow N, Stiehm M, et al. Finite Element Analysis of Compliance of Stent-Vesselsystems[J]. Biomed Tech (Berl), 2013. [46] Mueller\|Huelsbeck S, Schafer PJ, Charalambous N, et al. Comparison of carotid stents: an in-vitro experiment focusing on stent design[J]. J Endovasc Ther, 2009, 16(2): 168-177. [47] Desai M, Bakhshi R, Zhou X, et al. A sutureless aortic stent-graft based on a nitinol scaffold bonded to a compliant nanocomposite polymer is durable for 10 years in a simulated in vitro model[J]. J Endovasc Ther, 2012, 19(3):415-427. [48] Heijmen RH, Thompson MM, Fattori R, et al. Valiant thoracic stent-graft deployed with the new captivia delivery system: procedural and 30-day results of the valiant captivia registry[J]. J Endovasc Ther, 2012, 19(2):213-225. [49] Mlynski A, Marzelle J, Desgranges P, et al. Two cases of misaligned deployment of valiant captivia thoracic stent graft[J]. J Vasc Surg, 2012, 56(5):1419-1421. [50] Singh C, Wang X. A biomechanically optimized knitted stent using a bio-inspired design approach[J]. Text Res J, 2015, 86(4):380-392. |
|
|
|