|
|
The Microneedle Array of Dry Electrodes Based on MEMS and its Applications in the Electrophysiological Signals Acquisition |
School of Electrical Engineering and Information, Sichuan University, Chengdu 610065, China |
|
|
Abstract Electrophysiological signals directly reflect health status, and with the emergence of a variety of portable devices and wearable devices, electrophysiological signals acquisition is gaining more and more attention. In recent years, many researchers working on the acquisition electrodes of electrophysiological signals, so the microneedle array of dry electrodes based on microelectromechanical system (MEMS) technologies became mature gradually. The microneedle array of dry electrodes achieve electrophysiological signals acquisition continuously, chronically, effectively by using microneedles to penetrate into the examinee’s skin. Mironeedle array of dry electrodes gradually replace the traditional wet electrodes and get increasingly used because of its advantages of low cost, simple operation, not upset examinee, high quality of the acquisition. This article highlights the research value of microneedle array of dry electrodes by comparing with wet electrodes; combined with the latest research at home and abroad, reviews the processing technologies, improving technologies, and application status in the electrophysiological signals acquisition of microneedle array of dry electrodes; discusses the existing deficiencies of microneedle array of dry electrodes and makes a prospect for the future development trend.
|
|
|
|
|
[1]Waldner JB. Nanocomputers and swarm intelligence[M]. John Wiley & Sons, 2010:40-67.
[2]刘梦星,汪丰,鲁豫杰,等.一种基于非接触式电极阵列的心电监测床垫[P].中国专利:ZL201220187163,2013-01-30.
[3]Windmiller JR, Zhou N, Chuang MC, et al. Microneedle arraybased carbon paste amperometric sensors and biosensors[J]. Analyst, 2011, 136(9): 1846-1851.
[4]Gardon M, Dosta S, Guilemany JM, et al. Improved, high conductivity titanium suboxide coated electrodes obtained by atmospheric plasma spray[J]. Journal of Power Sources, 2013, 238: 430-434.
[5]Griss P, Enoksson P, TolvanenLaakso HK, et al. Micromachined electrodes for biopotential measurements[J]. Journal of Microelectromechanical Systems, 2001, 10(1): 10-16.
[6]Wang Yute, Wang Yijun, Jung TP. A cellphonebased brain-computer interface for communication in daily life[J]. Journal of Neural Engineering, 2011, 8(2): 025018.
[7]LopezGordo MA, SanchezMorillo D, Valle FP. Dry EEG electrodes[J]. Sensors, 2014, 14(7): 12847-12870.
[8]Lin Chinteng, Ko Liwei, Chiou Jinchern, et al. Noninvasive neural prostheses using mobile and wireless EEG[J]. Proceedings of the IEEE, 2008, 96(7): 1167-1183.
[9]Henrich D, Hoffmann K, Schmidt T. New dry electrodes with comparable performance as standard electrodes[J].Biomedical Engineering/Biomedizinische Technik, 2013,9(58):4136-4138.
[10]Chi YM, Wang Yute, Wang Yijun, et al. Dry and noncontact EEG sensors for mobile brain-computer interfaces[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2012, 20(2): 228-235.
[11]Lin Chinteng, Liao Lunde, Liu Yuhang, et al. Novel dry polymer foam electrodes for longterm EEG measurement [J]. IEEE Transactions on Biomedical Engineering, 2011, 58(5): 1200-1207.
[12]Yu LM, Tay FEH, Guo DG, et al. A MEMSbased bioelectrode for ECG measurement[C]//IEEE Sensors 2008 Conference. Lecce: IEEE, 2008: 1068-1071.
[13]Yamagiwa S, Sawahata H, Ishida M, et al. Microelectrode arrays for multichannel motor unit EMG recording[C]// 2014 IEEE 27th International Conference on Micro Electro Mechanical Systems (MEMS).San Francisco: IEEE, 2014: 857-860.
[14]Wang Longfei, Liu Jingquan, Yan Xiaoxiao, et al. A MEMSbased pyramid microneedle electrode for longterm EEG measurement[J]. Microsystem Technologies, 2013, 19(2): 269-276.
[15]Birchall JC, Clemo R, Anstey A, et al. Microneedles in clinical practice\|an exploratory study into the opinions of healthcare professionals and the public[J]. Pharmaceutical Research, 2011, 28(1): 95-106.
[16]Feng Suyun, Fan Jincai, Liu Liqiang, et al. Study on combination stratege of microneedles array technology and ethosomes for improving the permeation rate of rhaFGF through skin[J]. Chinese Journal of Aesthetic Medicine, 2012, 7: 1159-1162.
[17]Teichert GH, Burnett S, Jensen BD. A microneedle array able to inject tens of thousands of cells simultaneously[J]. Journal of Micromechanics and Microengineering, 2013, 23(9): 095003.
[18]Ito Y, Ohta J, Imada K, et al. Dissolving microneedles to obtain rapid local anesthetic effect of lidocaine at skin tissue[J]. Journal of Drug Targeting, 2013, 21(8): 770-775.[19]Abu-Zayyad T, Aida R, Allen M, et al. The cosmicray energy spectrum observed with the surface detector of the telescope array experiment[J]. The Astrophysical Journal Letters, 2013, 768(1): L1.
[20]Nakazaki N, Takao Y, Eriguchi K, et al. Molecular dynamics simulations of silicon chloride ion incidence during Si etching in Clbased plasmas[J]. Japanese Journal of Applied Physics, 2014, 53(5): 056201.
[21]Dias NS, Carmo JP, da Silva AF, et al. New dry electrodes based on iridium oxide (IrO) for noninvasive biopotential recordings and stimulation[J]. Sensors and Actuators A: Physical, 2010, 164(1): 28-34.
[22]Yan Xiaoxiao, Liu Jingquan, Jiang Shuidong, et al. Tapered metal microneedlesfabricated by the hybrid process of mechanical dicing and electrochemical corrosion for drug delivery[J]. Micro & Nano Letters, 2012, 7(12): 1313-1315.
[23]Zhu Jun, Shen Qi, Cao Ying, et al. Characterization of outofplane cone metal microneedles and the function of transdermal delivery[J]. Microsystem Technologies, 2013, 19(4): 617-621.
[24]Mansoor I, Liu Y, Hafeli UO, et al. Fabrication of hollow microneedle arrays using electrodeposition of metal onto solvent cast conductive polymer structures[C]//The 17th International Conference on SolidState Sensors, Actuators and Microsystems.Barcelona: IEEE, 2013: 373-376.
[25]Cha KJ, Kim T, Park SJ, et al. Simple and costeffective fabrication of solid biodegradable polymer microneedle arrays with adjustable aspect ratio for transdermal drug delivery using acupuncture microneedles[J]. Journal of Micromechanics and Microengineering, 2014, 24(11): 115015.
[26]裴为华, 王宇, 郭凯, 等. 长期记录生理电信号的侵入式斜针无痛皮肤干电极器件:中国,ZL200910242338[P].7, 2010-06-02.
[27]Wang Longfei, Liu Jingquan, Yang Bin, et al. PDMSbased low cost flexible dry electrode for longterm EEG measurement[J]. IEEE Sensors Journal, 2012, 12(9): 2898-2904.
[28]Chen Chihuan,ChangChialin, Chang Chihwei, et al. A lowpower biopotential acquisition system with flexible PDMS dry electrodes for portable ubiquitous healthcare applications [J]. Sensors, 2013, 13(3): 3077-3091.
[29]Kim DH, Ghaffari R, Lu N, et al. Flexible and stretchable electronics for biointegrated devices[J]. Annual Review of Biomedical Engineering, 2012, 14: 113-128.
[30]李璟文, 王守岩. 基于 MEMS 技术的植入式柔性多触点平面电极阵列[J]. 纳米技术与精密工程, 2014, 12(3): 217-221.
[31]Kovac S, Rodionov R, Chinnasami S, et al. Clinical significance of nonhabitual seizures during intracranial EEG monitoring[J]. Epilepsia, 2014, 55(1): e1-e5.
[32]Daly I, SweeneyReed CM, Nasuto SJ. Testing for significance of phase synchronisation dynamics in the EEG[J]. Journal of Computational Neuroscience, 2013, 34(3): 411-432.
[33]Gargiulo G, Bifulco P, Calvo RA, et al. A mobile EEG system with dry electrodes[C]// IEEE Biomedical Circuits and Systems Conference. Maryland: EEE, 2008: 273-276.[34]Gargiulo G, Calvo RA, Bifulco P, et al. A new EEG recording system for passive dry electrodes[J]. Clinical Neurophysiology, 2010, 121(5): 686-693.[35]Lopez\|Gordo MA, SanchezMorillo D, Valle FP. Dry EEG electrodes[J]. Sensors, 2014, 14(7): 12847-12870.
[36]Liao Lunde, Chen Chiyu, Wang IJ, et al. Gaming control using a wearable and wireless EEGbased braincomputer interface device with novel dry foambased sensors[J]. Journal of Neuroengineering and Rehabilitation, 2012, 9(5): 1-11.
[37]Agrawal K, Chole V. A Framework for MEMS based hand gesture recognitionsystem for controlling the mouse cursor using wireless technology[J]. 2014,3(5):1223-1230.
[38]Brembilla\|Perrot B, Moejezi RV, Zinzius PY, et al. Missing diagnosis of preexcitation syndrome on ECG: clinical and electrophysiological significance[J]. International Journal of Cardiology, 2013, 163(3): 288-293.
[39]Li Jian, Zhou Haiying, Zuo Decheng, et al. Ubiquitous health monitoring and realtime cardiac arrhythmias detection: a case study[J]. Biomedical Materials and Engineering, 2014, 24(1): 1027-1033.
[40]Noh YH, Hwang GH, Jeong DU. Implementation of realtime abnormal ECG detection algorithm for wearable healthcare[C]// 2011 6th International Conference on Computer Sciences and Convergence Information Technology.Seogwipo: IEEE, 2011: 111-114.
[41]Chang Chialin, Chang Chihwei, Huang Hongyi, et al. A powerefficient biopotential acquisition device with DSMDE sensors for longterm healthcare monitoring applications[J]. Sensors, 2010, 10(5): 4777-4793.
[42]Wang Longfei, Liu Jingquan, Peng Huiling, et al. MEMSbased flexible capacitive electrode for ECG measurement[J]. Electronics Letters, 2013, 49(12): 739-740.
[43]Chi YM, Jung TP, Cauwenberghs G. Drycontact and noncontact biopotential electrodes: methodological review[J]. IEEE Reviews in Biomedical Engineering, 2010, 3: 106-119.
[44]Lane RJM, Roncaroli F, Charles P, et al. Acetylcholine receptor antibodies in patients with genetic myopathies: clinical and biological significance[J]. Neuromuscular Disorders, 2012, 22(2): 122-128.
[45]Park YH. Effects of taping application type on grip power, pinch power, and EMG activity[J]. Science, 2013, 1(5): 239-243.
[46]Liu Xing, Chen Hui, Huang Qingan, et al. MEMSbased intraoperative monitoring system for improved safety in lumbar surgery[J]. IEEE Sensors Journal, 2013, 13(5): 1541-1548.
[47]Valade A, Soto Romero G, Escriba C, et al. Wearable multisensor system for embedded body position and motion analysis during cycling[J]. Journal of Science and Cycling, 2014, 3(2): 68.
|
|
|
|