1Ningbo Institute of Technology, Zhejiang University, Ningbo 315100, Zhejiang, China; 2Key Laboratory of Refrigeration and Cryogenic Technology of Zhejiang Province, Hangzhou 310027, China; 3 Institute of Refrigeration and Cryogenics, Zhejiang University, Hangzhou 310027, China
Abstract:The knowledge of permeation kinetics of cryoprotective agent (CPA) in articular cartilage (AC) is of critical importance for designing optimal CPA addition protocols to achieve successful cryopreservation of AC. In this study, a mass transport model was developed for predicting CPA diffusion in AC. The effective diffusion coefficient was correlated to the infinite dilution coefficients through a binary diffusion thermodynamic model. The UNIFAC model was used to evaluate the activity coefficient, the Vignes equation was employed to estimate the composition dependence of the diffusion coefficient, and the Siddiqi-Lucas correlation was applied to determine the diffusion coefficient at infinite dilution. The model was demonstrated to predict the spatial and temporal CPA distribution in AC during addition. Results showed that the predicted overall CPA uptakes by AC match the experiment data well. The mean relative error (MRE) and coefficient of determination (R2) are 1.90%~36.29% and 0.959~0.998 for dimethyl sulfoxide, 13.56%~19.19% and 0.990~0.995 for glycerol, 8.89%~22.09% and 0.969~0.988 for ethylene glycol, and 5.35%~23.76% and 0.971~0.992 for propylene glycol, respectively.
[1] Elmoazzen HY, Poovadan A, Law GK, et al. Dimethyl sulfoxide toxicity kinetics in intact articular cartilage [J]. Cell Tissue Bank, 2007, 8(2): 125-133. [2] Jomha NM, Weiss ADH, Fraser Forbes J, et al. Cryoprotectant agent toxicity in porcine articular chondrocytes [J]. Cryobiology, 2010, 61(3): 297-302. [3] Muldrew K, Sykes B, Schachar N, et al. Permeation kinetics of dimethyl sulfoxide in articular cartilage [J]. CryoLetters, 1996, 17(6): 331-340. [4] Sharma R, Law GK, Rehieh K, et al. A novel method to measure cryoprotectant permeation into intact articular cartilage [J]. Cryobiology, 2007, 54(2): 196-203. [5] Jomha NM, Law GK, Abazari A, et al. Permeation of several cryoprotectant agents into porcine articular cartilage [J]. Cryobiology, 2009, 58(1): 110-114. [6] Mukherjee IN, Li Y, Song YC, et al. Cryoprotectant transport through articular cartilage for long-term storage: experimental and modeling studies [J]. Osteoarthritis Cartilage, 2008, 16(11): 1379-1386. [7] Lawson A, Mukherjee IN, Sambanis A. Mathematical modeling of cryoprotectant addition and removal for the cryopreservation of engineered or natural tissues [J]. Cryobiology, 2012, 64(1): 1-11. [8] Shardt N, Al-Abbasi KK, Yu H, et al. Cryoprotectant kinetic analysis of a human articular cartilage vitrification protocol [J]. Cryobiology, 2016, 73(1): 80-92. [9] Zhang Shaozhi, Pegg DE. Analysis of the permeation of cryoprotectants in cartilage [J]. Cryobiology, 2007, 54(2): 146-153. [10] Abazari A, Elliott JAW, Law GK, et al. A biomechanical triphasic approach to the transport of nondilute solutions in articular cartilage [J]. Biophys J, 2009, 97(12): 3054-3064. [11] Abazari A, Thompson RB, Elliott JAW, et al. Transport phenomena in articular cartilage cryopreservation as predicted by the modified triphasic model and the effect of natural inhomogeneities [J]. Biophys J, 2012, 102(6): 1284-1293. [12] Yu Xiaoyi, Chen Guangming, Zhang Shaozhi. A model to predict the permeation kinetics of dimethyl sulfoxide in articular cartilage [J]. Biopreserv Biobank, 2013, 11(1): 51-56. [13] Maroudas A. Physicochemical properties of articular cartilage [M]// Freeman MAR, eds, Adult Articular Cartilage. Turnbridge Wells: Pitman Medical, 1979: 131-170. [14] 卫小春. 关节软骨[M]. 北京: 科学出版社, 2007: 3. [15] Edward JT. Molecular volumes and the Stokes-Einstein equation [J]. J Chem Edu, 1970, 47: 261-270. [16] Pegg DE, Wang LH, Vaughan D, et al. Cryopreservation of articular cartilage. Part 2: Mechanisms of cryoinjury [J]. Cryobiology, 2006, 52(3): 347-359. [17] Taylor R, Krishna R. Multicomponent Mass Transfer [M]. New York: John Wiley & Sons Inc, 1993: 77. [18] Kosanovich GM, Cullinan Jr. HT. A study of molecular transport in liquid mixtures based on the concept of ultimate volume [J]. Ind Eng Chem Fundamen, 1976, 15(1): 41-45. [19] 董新法, 方利国, 陈砺. 物性估算原理及计算机计算[M]. 北京: 化学工业出版社, 2006: 249-263. [20] Vignes A. Diffusion in binary solutions. Variation of diffusion coefficient with composition [J]. Ind Eng Chem Fundamen, 1966, 5: 189-199. [21] Siddiqi MA, Lucas K. Correlations for prediction of diffusion in liquids [J]. Can J Chem Eng, 1986, 64: 839-843. [22] He Xiaoming, Fowler A, Toner M. Water activity and mobility in solutions of glycerol and small molecular weight sugars [J]. J Appl Phys, 2006, 100: 074702. [23] Wohlfarth C. Viscosity of dimethylsul foxide[J]. Landolt\|Brnstein\|Group IV Physical Chemistry, 2008,25(Suppl to IV):18. [24] Haynes WM. CRC Handbook of Chemistry and Physics [M]. 92nd ed. Boca Raton: CRC Press, 2012. [25] 虞效益, 张绍志, 徐梦洁, 等. 二甲亚砜对关节软骨渗透性研究[J]. 工程热物理学报, 2010, 31(8): 1363-1366. [26] 李春喜, 邵云, 姜丽娜. 生物统计学[M]. 北京: 科学出版社, 2008: 134-135. [27] 崔文顺, 李建玲. 就平均相对误差的算法与李庆振等商榷[J]. 河北林学院学报, 1989, 4(4): 74-75. [28] Pegg DE, Wang Lihong, Vaughan D. Cryopreservation of articular cartilage. Part 3: The liquidus-tracking method [J]. Cryobiology, 2006, 52(3): 360-368. [29] Jacobs MH, Glassman HN, Parpart AK. Osmotic properties of the erythrocyte. VII. The temperature coefficients of certain hemolytic processes [J]. J Cell Comp Physiol, 1935, 7(2): 197-225. [30] Kedem O, Katchalsky A. Thermodynamic analysis of the permeability of biological membranes to non-electrolytes [J]. Biochimica et Biophysica Acta, 1958, 27: 229-246. [31] Medvedev O. Diffusion coefficients in multicomponent mixtures [D].Kongens Lyngby: Technical University of Demark, 2005. [32] 艾丹亭, 马学虎, 兰忠, 等. 多组分冷冻保护剂导入神经干细胞球的传质模拟[J]. 高校化学工程学报, 2015, 29(1): 1-10. [33] Marcolli C, Peter Th. Water activity in polyol/water systems: new UNIFAC parameterization [J]. Atmos Chem Phys, 2005, 5(6): 1545-1555.