Review on State-of-the-Art of Contrast-Enhanced Ultrasound Imaging
1 Beijing Shen Mindray Medical Electronics Technology Research Institute Co. Ltd., Beijing 100085, China
2 The General Hospital of Chinese People′s Liberation, Beijing 100853, China
3 Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
Abstract:Due to its characteristics of noninvasive, real-time, and high diagnosis ratios, contrast-enhanced ultrasound imaging has played an increasingly important role in cancer diagnosis. Herein, the latest research progress of contrast-enhanced ultrasound imaging was summarized in this paper, mainly including following aspects: 1) Subharmonic ultrasound imaging with a higher contrast-to-tissue ratio and superior penetration performance, which are due to detection of the lower frequency component of the microbubbles′ backscatter echoes; 2) Application of plane-wave emission technology in ultrasound contrast imaging that is capable of increasing temporal resolution whilst reducing microbubble′s destruction; 3) Coded excitation based ultrasound contrast imaging to obtain a better penetration; 4) Experimental research on new types of ultrasound contrast agents for ultrahigh frequency imaging.
[1]周永昌, 郭万年. 超声医学[M]. 北京: 科学技术文献出版社, 1989.
[2]Ophir J, Parker KJ. Contrast Agents in Diagnostic Ultrasound. Ultrasound in Medicine & Biology [J]. 1989, 15(4): 319-333.
[3]刘吉斌, 王金锐. 超声造影显影[M]. 北京: 科学技术文献出版社, 2010.
[4]凌涛, 郑海荣. 超声造影微泡非线性声学特性与成像研究进展[J]. 中国介入影像与治疗学, 2009, 6(4): 392-396.
[5]Bouakaz A, Frigstad S, Ten Cate FJ, et al. Super harmonic imaging: a new imaging technique for improved contrast detection [J]. Ultrasound in Medicine & Biology, 2002, 28(1): 59-68.
[6]Bouakaz A, Krenning BJ, Vletter WB, et al. Contrast super harmonic imaging: a feasibility study [J]. Ultrasound in Medicine & Biology, 2003, 29(4): 547-553.
[7]Simpson DH, Chin CT, Burns PN. Pulse inversion doppler: a new method for detecting nonlinear echoes from microbubble contrast agent [J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1999, 46(2): 372-382.
[8]Phillips PJ. Contrast pulse sequences (CPS): imaging nonlinear microbubbles [C] //Proceedings of 2001 IEEE Ultrasonics Symposium. Atlanta: IEEE, 2001, 2: 1739-1745.
[9]彭旗宇, 高上凯. 医学超声成像中的编码激励技术及其应用[J]. 生物医学工程学杂志, 2005,22(1): 175-180.
[10]韩雪梅, 彭虎, 杜宏伟,等. 基于线性调频信号的高帧率超声成像系统[J]. 中国生物医学工程学报, 2005, 24(6): 700-704.
[11]谷金宏, 王素品, 万明习. 发射调频信号提高医学超声图像的信号噪声比[J]. 西安交通大学学报, 2007, 41(6): 741-745.
[12]Renaud G, Bosch JG, van der Steen AFW, et al. Chirp resonance spectroscopy of single lipidcoated microbubbles using an “acoustical camera”[J]. J. Acoust Soc Am, 2012, 132(6): 470-475.
[13]Daeichin V, Kooiman K, Skachkov I, et al. Optimization of ultrasound contrast agent for high frequency ultrasound molecular imaging using subharmonic oscillation [C] //2014 IEEE International Ultrasonics Symposium.
Chicago: IEEE, 2014: 1766-1769.
[14]Forsberg F, Shi WT, Goldberg BB. Subharmonic imaging of contrast agents [J]. Ultrasonics, 2000, 38: 93-104.
[15]Forsberg F, Piccoli CW, Merton DA, et al. Breast lesions: imaging with contrastenhanced subharmonic USInitial experience [J]. Radiology, 2007, 244:718-726.
[16]Eisenbrey JR, Sridharan A, Machado P, et al. 3D subharmonic imaging in vitro and in vivo [J]. Acad Radiol, 2012, 19: 732-739.
[17]Eisenbrey JR, Dave JK, Halldorsdottir VG, et al. Simultaneous grayscale and subharmonic ultrasound imaging on a modified commercial scanner [J]. Ultrasonics, 2011, 51(8):890-897.
[18]Eisenbrey JR, Shaw CM, Lyshchik A, et al. Characterization of renal masses with harmonic and subharmonic contrastenhanced ultrasound [C] //2014 IEEE International Ultrasonics Symposium. Chicago: IEEE, 2014: 193-196.
[19]Sridharan A, Eisenbrey JR, Machado P, et al. Quantitative analysis of vascular heterogeneity in breast lesions using contrastenhanced 3\|D harmonic and subharmonic ultrasound imaging [J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2015, 62(3): 502-510.
[20]Eisenbrey JR, Machado P, Sridharan A, et al. 4D harmonic and subharmonic contrastenhanced ultrasound for the characterization of breast masses: update on a multicenter prospective study [C] //2014 IEEE International Ultrasonics Symposium. Chicago: IEEE, 2014: 189-192.
[21]Shi WT, Forsberg F. Ultrasonics characterization of the nonlinear properties of contrast microbubbles. Ultrasound in Medicine & Biology, 2000, 26(1): 93-104.
[22]Bercoff J, Tanter M, Fink M. Supersonic shear imaging: a new technique for soft tissue elasticity mapping[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2004, 51(4): 396-409.
[23]Montaldo G, Tanter M, Bercoff J, et al. Coherent planewave compounding for very high frame rate ultrasonography and transient elastography [J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2009, 56(3): 489-506.
[24]Couture O, Fink M, Tanter M. Ultrasound contrast plane wave imaging [J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2012, 59(12): 2676-2683.[25]Viti J, Vos HJ, de Jong N, et al. Contrast detection efficacy for plane vs. focused [C] //2014 IEEE International Ultrasonics Symposium. Chicago: IEEE, 2014: 1750-1753.
[26]Wang DY, Yang X, Wan JJ, et al. Ultrasound contrast plane wave imaging with higher CTR based on pulse inversion bubble wavelet transform [C] //2014 IEEE International Ultrasonics Symposium. Chicago: IEEE, 2014: 1762-1765.
[27]谷金宏, 王素品, 宗瑜瑾, 等. 医学超声成像编码发射技术综述[EB/OL]. 中国科技论文在线, http://www.paper.edu.cn.
[28]O′Donnell M. Coded excitation system for improving the penetration of realtime phasedarray imaging systems [J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1992, 39: 341-351.
[29]Pedersen MH, Misaridis TX, Jensen JA. Clinical evaluation of chirpcoded excitation in medical ultrasound [J]. Ultrasound in Medicine & Biology, 2003, 29(6): 895-905.
[30]Chiao RY, Hao XH. Coded excitation for diagnostic ultrasound: a system developer′s perspective [J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2005, 52(2): 160-170.
[31]Borsboom JMG, Chin. CT, Bouakaz A, et al. Harmonic chirp imaging method for ultrasound contrast agent [J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2005, 52(2): 241-249.
[32]谷金宏, 万明习, 王素品, 等. 基于调频信号发射的超声造影剂谐波成像方法[J]. 声学学报, 2006, 31(3): 240-246.
[33]Shekhar H, Doyley MM. The response of phospholipidencapsulated microbubbles to chirpcoded excitation:
iplications for highfrequency nonlinear imaging [J]. J Acoust Soc Am, 2013, 133(5): 3145-3158.
[34]Helfield BL, Cherin E, Foster FS, et al. Investigating the subharmonic response of individual phospholipid encapsulated microbubbles at high frequencies: a comparative study of five agents [J]. Ultrasound Med Biol, 2012, 38(5):846-863.
[35]van Rooij T, Luan Y, Renaud G, et al. Acoustical response of DSPC versus DPPC lipidcoated microbubbles [C] //2013 IEEE International Ultrasonics Symposium. Prague: IEEE, 2013: 310-313.